

Home Renovation Roadmaps to Address Energy Poverty in Vulnerable Rural Districts

Online webinar: "Quantifying the impact: Addressing energy poverty through efficiency"

Evaluation of energy efficiency measures addressing the needs of households experiencing energy poverty in rural areas

Akis Apostoliotis Dimitris Papantonis Prof. Dr. Alexandros Flamos

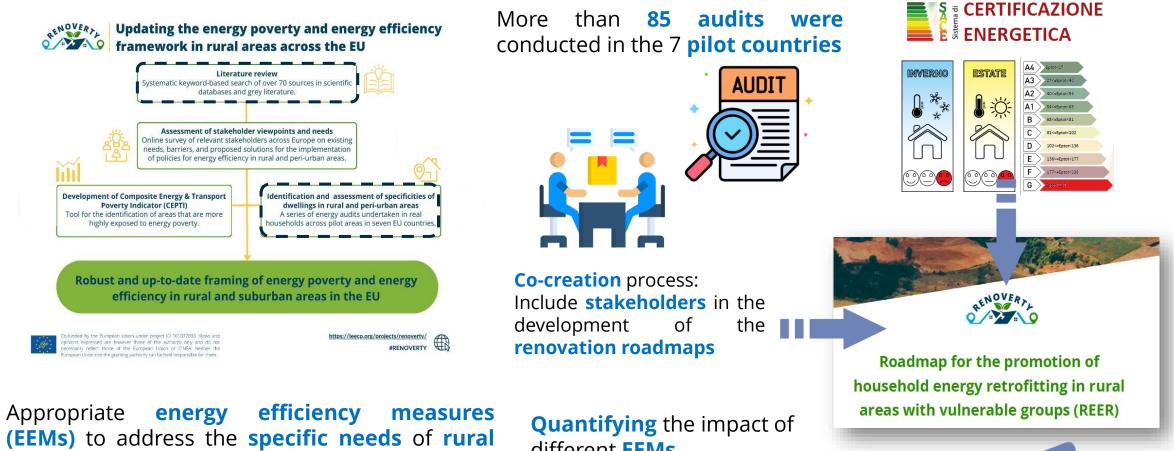
(Technoeconomics of Energy Systems laboratory (TEESlab) University of Piraeus Research Center)

This work is based on research conducted within the co-funded by the European Union LIFE Programme project RENOVERTY: ID101077272. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or CINEA. Neither the European Union nor the granting authority can be held responsible for them.

General context: **RENOVERTY project**

- Causes of energy poverty at the local, regional, national, and European scales have recently become clearer, yet an absence of practical and theoretical understanding of how to address the issue in rural areas exists.
- Rural areas across Central Eastern (CEE), Southern Eastern (SEE), and Southern Europe (SE) are traditionally much poorer, and more vulnerable to energy poverty.
- Despite their need for support, they are left behind in the energy transition, and practices to reduce energy poverty are lacking.

RENOVERTY main objective


Design a scalable series of renovation roadmaps with operating models for 7 vulnerable rural areas across CEE, SEE, and SE, while ensuring the replicability of the model in the European Union.

- ✓ Supporting 12 Local Action Groups (LAGs) for the creation and implementation of Rural Energy Efficiency Roadmaps (REERs).
- ✓ Empowering all (non) public actors in rural areas to become involved in the process of renovating vulnerable districts/buildings.
- ✓ Delivering a scalable operating model, to support the replicability of REERs and guide more public actors to renovate rural vulnerable districts after the project ends.

RENOVERTY approach

areas.

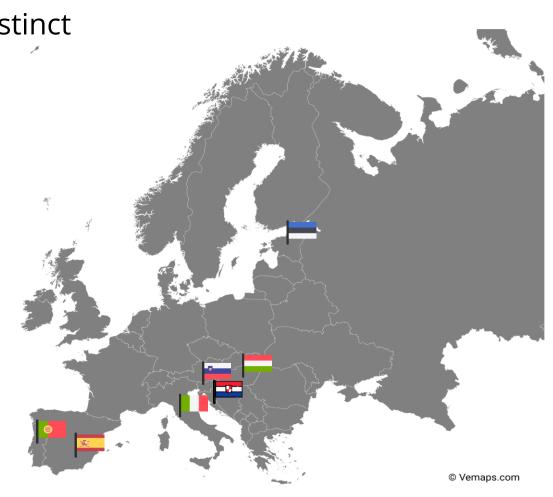
different **EEMs**

RENOVERTY: Evaluation of EEMs

Evaluation of **EEMs** for households experiencing **energy poverty** in the pilot regions.

Evaluation criteria:

- The **energy-saving potential** of the EEMs
- The cost-effectiveness of the EEMs



RENOVERTY: Geographical Scope

EEMs were evaluated in seven pilots for 13 distinct **building typologies**:

- Sveta Nedelja (Croatia) (2 typologies)
- > Tartu (*Estonia*) (1 typologies)
- Bükk-Mak & Somló-Marcalmente Bakonyalja Leader (*Hungary*) (2 typologies)
- > Zasavje (*Slovenia*) (2 typologies)
- Parma (*Italy*) (2 typologies)
- Coimbra (Portugal) (2 typologies)
- Osona (Spain) (2 typologies)

Energy Conversion and Management Volume 205, 1 February 2020, 112339

A modular high-resolution demand-side management model to quantify benefits of demand-flexibility in the residential sector

Vassilis Stavrakas, Alexandros Flamos ዳ 🖾

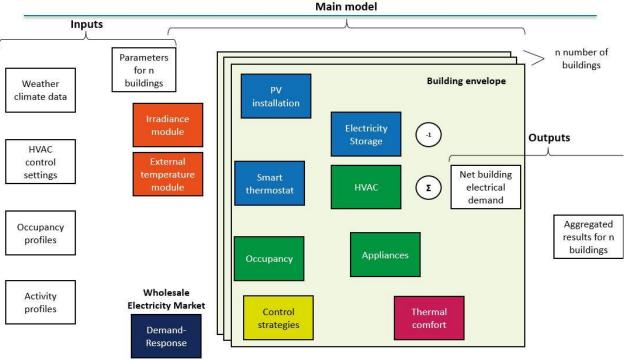
Currently applied and further developed in multiple EC-funded H2020, HE, and LIFE projects

Building sector

Energy demand simulation model

Benefits & limitations of

demand-flexibility primarily for consumers & other power actors involved

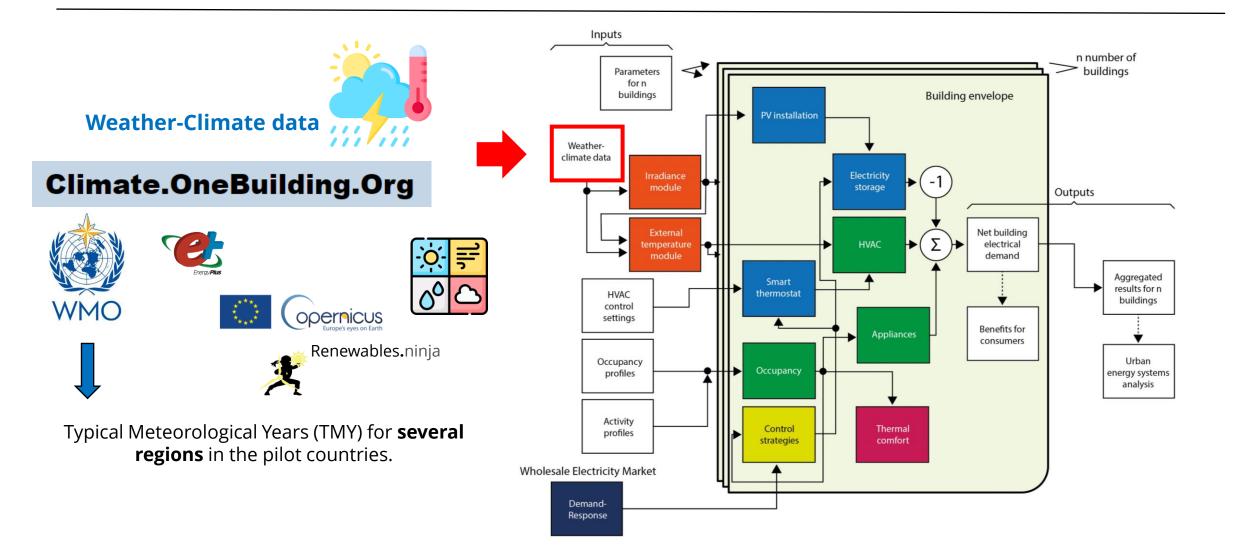


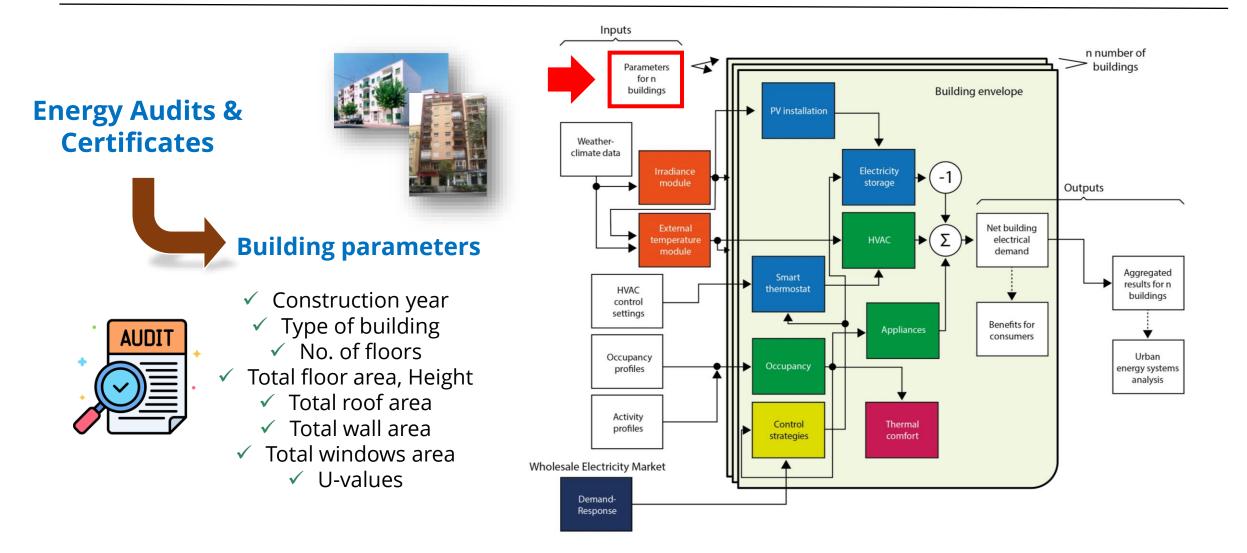
Model Characteristics

Main **principles** of **component-** & **modular**-based system modelling approach

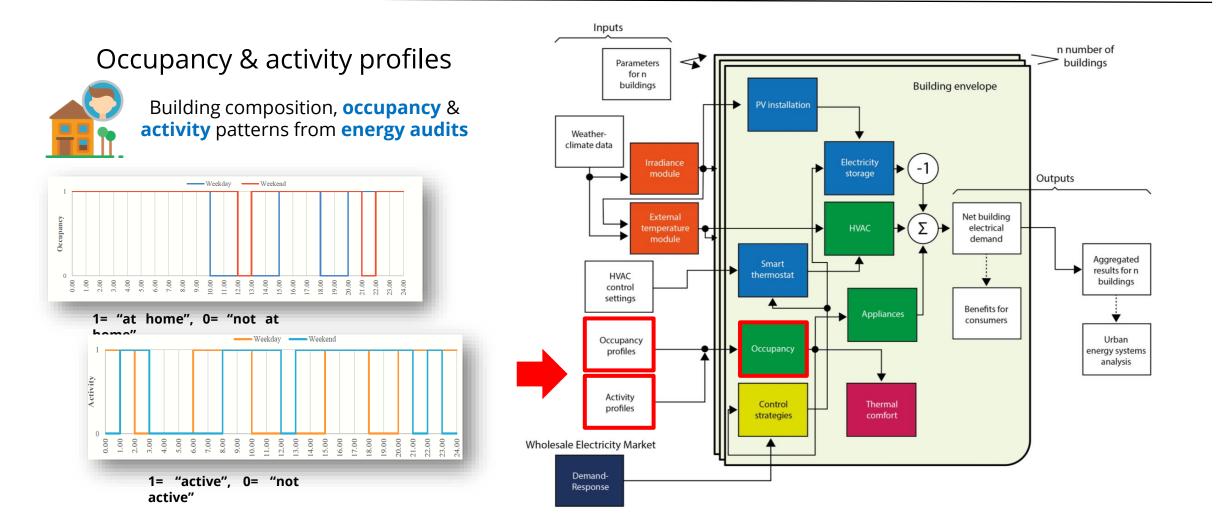
- Interdependence of decisions within modules
- Independence of decisions between modules
- Hierarchical dependence of modules on components embodying <u>standards</u> & <u>design</u> <u>rules</u>

Modular structure


How is the model parameterised in this application?



Existing Situation – Baseline Scenarios (1/3)



Existing Situation – Baseline Scenarios (2/3)

Existing Situation – Baseline Scenarios (3/3)

Future situation – Energy efficiency scenarios

Evaluated the **performance** & **replicability** potential of **EEMs**

- ✓ Long-term energy savings
- \checkmark Sustainability
- 🗸 Risk
- ✓ Return of investment

Cost-effectiveness

$$LCSE = \frac{(CRF * Cost_{investment}) + Cost_{0\&M}}{Energy Savings (kWh)}$$

Heating technology change:

Substitution of fossil fuel boilers with efficient **technologies** (e.g., **heat pumps**, etc.)

Assist the development of the renovation roadmaps

particularities of households experiencing energy poverty in rural pilot regions

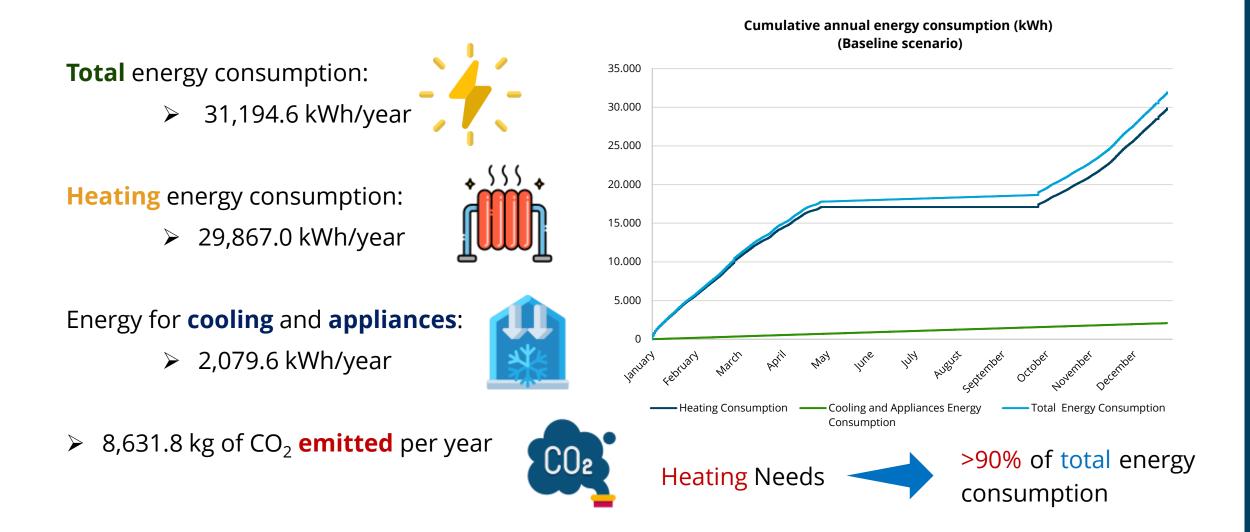
providing **policymakers**, **consumers** & other potential **end-users** with useful insights

What about the simulation results?

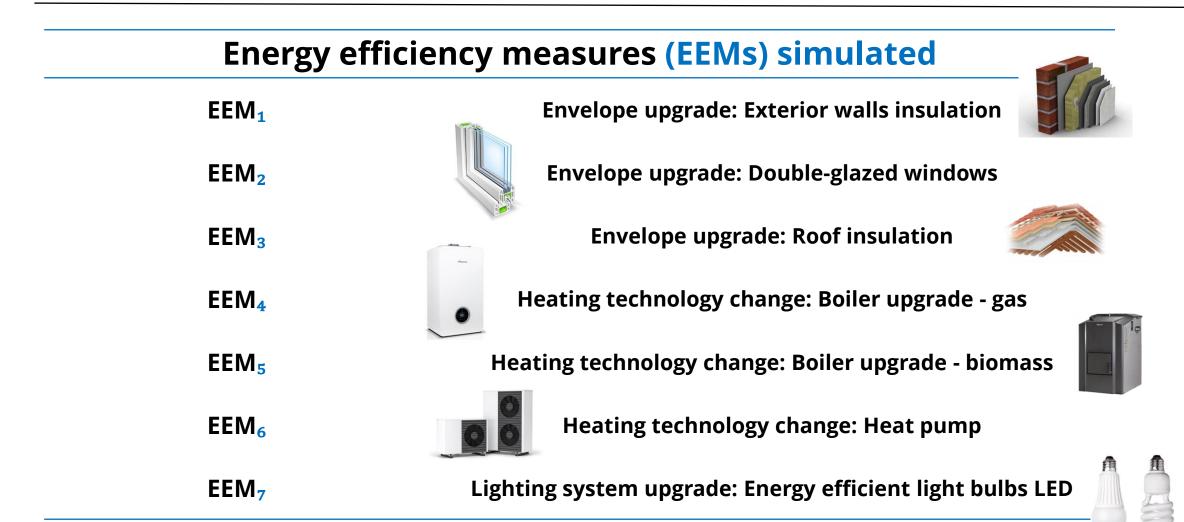
uation of energy efficiency measures Idressing the needs of energy poor households in rural areas

Indicative results: Rural region of Osona, Spain

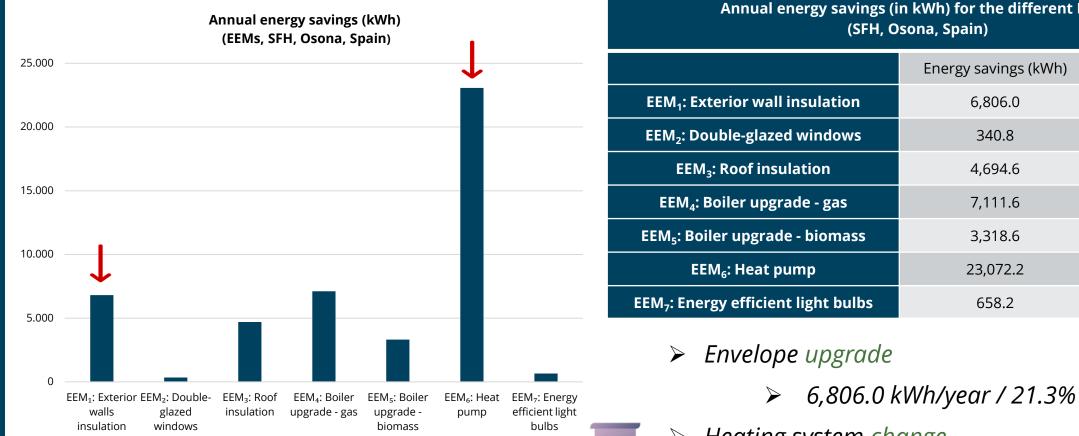
Country: Spain Region: Osona Type of building/usage: Single Family House Year of Construction: 1960-1980


Total floor area: 140 m²

Osona, Spain (SFH)			
Building characteristics			
Year of construction 1960-1980			
Total floor area of the building	140 m ²		
Total area of exterior walls of the buildings	72 m ²		
Total roof area of the building	58 m ²		
Total area of windows	11 m ²		
Building envelope/construction features			
U _{wall}	2.40 W/m²/K		
U _{floor}	2.20 W/m²/K		
U _{roof} 2.60 W/m²/K			
U _{window}	3.60 W/m²/K		
HVAC and lighting systems			
Heating system	Oil boiler		
Nominal capacity 24 kW			
COP 0.85			

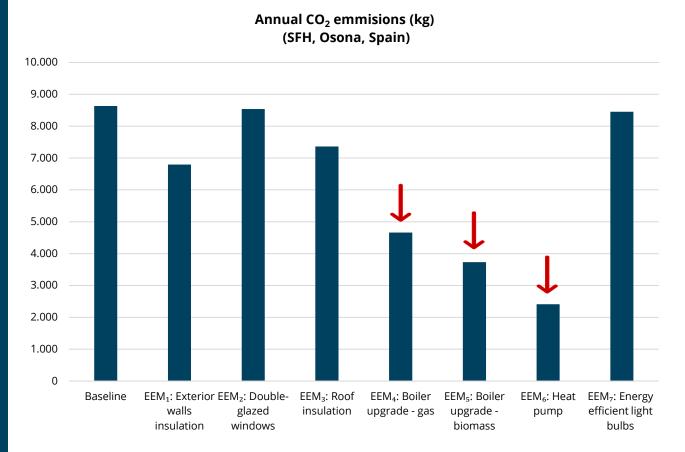


Indicative results: Baseline scenario


Indicative results: EEMs simulated

Indicative results: Energy performance

Annual energy savings (in kWh) for the different EEMs (SFH, Osona, Spain)				
	Energy savings (kWh)	Reduction (%)		
EEM ₁ : Exterior wall insulation	6,806.0	21.3		
EEM ₂ : Double-glazed windows	340.8	1.1		
EEM ₃ : Roof insulation	4,694.6	14.7		
EEM ₄ : Boiler upgrade - gas	7,111.6	22.3		
EEM ₅ : Boiler upgrade - biomass	3,318.6	10.4		
EEM ₆ : Heat pump	23,072.2	72.2		
EEM ₇ : Energy efficient light bulbs	658.2	2.1		


> Envelope upgrade

- Heating system change
 - 23,072.2 kWh/year / 72.2% \succ

Indicative results: Emissions reduction

Annual energy savings (in kWh) for the different EEMs (SFH, Osona, Spain)

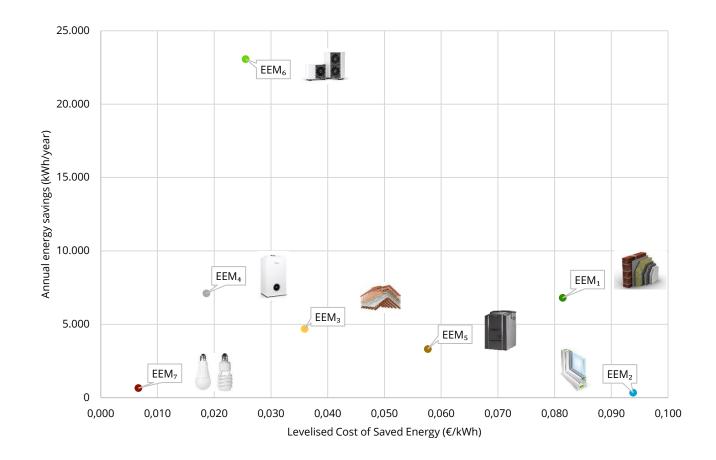
	Emissions avoided (kg CO ₂)	Reduction (%)
EEM ₁ : Exterior wall insulation	1,837.6	21.3
EEM ₂ : Double-glazed windows	92.0	1.1
EEM ₃ : Roof insulation	1,267.5	14.7
EEM ₄ : Boiler upgrade - gas	3,968.1	46.0
EEM ₅ : Boiler upgrade - biomass	4,898.2	56.7
EEM ₆ : Heat pump	6,221.5	72.1
EEM ₇ : Energy efficient light bulbs	177.7	2.1

Heating system changes leads to superior performances

Indicative results: Technoeconomic assesement

	Investment Costs (€)	Lifetime (years)	Discount Rate (%)	NPV (€)	PP (years)	LCSE (€/kWh)
EEM ₁	9,583	30	4.00%	6,705.8	13.3	0.081
EEM ₂	553	30	4.00%	262.7	16.1	0.094
EEM ₃	2,917	30	4.00%	8,318.8	5.0	0.036
EEM ₄	1,800	20	4.00%	24,997.8	0.9	0.019
EEM ₅	2,600	20	4.00%	42,646.2	0.8	0.058
EEM ₆	8,000	20	4.00%	28,600.1	3.2	0.026
EEM ₇	65	23	4.00%	2,008.1	0.5	0.007

EEM₇ and EEM₄ have the best levelised cost of saved energy and the shorter payback periods.



Heating system changes have higher profitability (NPV)

Indicative results: Cost effectiveness

- Comparison of the annual energy savings with LCSE.
- Impact of EEMs in terms of energy saving coupled with initial cost of the interventions.

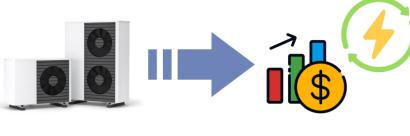
Significant energy savings + Low LCSE

Mediocre energy savings + High LCSE

Indicative results: Rate of financial support

	Subsidy level	NPV (€)	PP (years)	LCSE (€/kWh)
EEM ₁		9,101.4	9.3	0.061
EEM ₂		400.9	11.1	0.070
EEM ₃	c	9,047.9	3.7	0.027
EEM ₄	25%	25,447.8	0.7	0.014
EEM ₅		43,114.2	0.6	0.043
EEM ₆		30,600.1	2.4	0.019
EEM ₇		2,024.4	0.4	0.005

	Subsidy level	NPV (€)	PP (years)	LCSE (€/kWh)
EEM ₁		11,497.1	5.8	0.041
EEM ₂	50%	539.2	6.8	0.047
EEM ₃		9,777.0	2.4	0.018
EEM ₄		25,597.9	0.5	0.009
EEM ₅		43,764.2	0.4	0.029
EEM ₆		32,600.1	1.6	0.013
EEM ₇		2,040.6	0.2	0.003


Concluding remarks: Cross country insights (1/2)

Across pilot cases, the installation of heat pumps **consistently** leads to **significant energy savings**, but **local energy prices** strongly impact its **economic** performance.

Energy efficiency measures focusing on **envelope upgrades** are strongly influenced by:

- **Building** characteristics
- Renovation **costs**
- **Baseline** heating technology

External wall insulation shows the greatest **variability** in terms of **energy-saving potential**, while **roof insulation** has the most **consistent** performance.

Concluding remarks: Cross country insights (2/2)

Importance of baseline conditions in determining the effectiveness of interventions aimed at reducing energy consumption and environmental footprint.

Prioritisation of areas with greater inefficiencies.

Need for financial support to achieve higher household profitability.

> Cost effectiveness

Household profitability

> Environmental impact

> Alleviation of energy poverty

Roadmap for the promotion of household energy retrofitting in rural areas with vulnerable groups (REER)

Q & A

Discussion points

Thank you.

Akis Apostoliotis Graduate of National Technical University of Athens, Research Associ... Dimitris Papantonis Research Associate at TEESlab, PhD Candidate at University of Piraeus

For more info, follow our hashtag, visit our website or contact us:

apostoliotis@unipi.gr papantonis@unipi.gr aflamos@unipi.gr

Dr. Alexandros Flamos Full Professor & Director of TEESlab UNIPI

This work is based on research conducted within the co-funded by the European Union LIFE Programme project RENOVERTY: ID101077272. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or CINEA. Neither the European Union nor the granting authority can be held responsible for them.

