

EUROPEAN CLIMATE + ENERGY MODELLING FORUM

Data-driven bottom-up demand-side management modelling towards integrated and smart renovation packages for efficient, sustainable, and inclusive energy use in real-life residential pilots across the European Union

Dr. Vassilis Stavrakas, Mr. Dimitris Papantonis, Dr. Vlasios Oikonomou, Prof. Dr. Alexandros Flamos

European Climate + Energy Modelling Platform (ECEMP) Conference 2024, 16-17 October 2024, Brussels

This work has received funding from the Horizon Europe research and innovation programme project "FORTESIE" (Grant Agreement No. 101080029) and the LIFE programme project "RENOVERTY" (Grant Agreement No. 101077272). The authors would like to acknowledge the support from the EC. The content is the sole responsibility of its authors and does not necessary reflect the views of the EC.

INTRODUCTION & PROBLEM STATEMENT (1/3)

Buildings are accounting for nearly **40%** of final **energy consumption** in the EU.

50 million consumers struggle to keep their homes **adequately** warm.

Annual renovation rate of the building stock varying from **0.4** to **1.2%**.

More than **220 million building units**, representing **85%** of the EU's building stock, were built **before 2001**.

85-95% of the buildings that exist today will still be standing in 2050.

The building sector has significant room for decarbonisation.

Need for increased energy efficiency renovation efforts

INTRODUCTION & PROBLEM STATEMENT (2/3)

Towards the uptake of energy efficiency in the building sector

- Renovation Wave, as part of the EU Green Deal, aims to double the annual energy renovation rate by 2030.
 - If Aim to renovate 35 million inefficient buildings by 2030.
- **©** Fit For 55 sets a target of reducing emissions by at least 55% by 2030.
- REPowerEU changes the future of fossil fuel use in buildings radically aiming to enhance efforts on saving energy, diversifying energy supplies and producing clean energy.

DIVERSIFY

ACCELERATE

REPowerEU

PHASE OUT DEPENDENCY ON RUSSIAN FOSSIL FUELS

SMART INVESTMENT

National and European plans reforms and investments.

INTRODUCTION & PROBLEM STATEMENT (3/3)

EU lags behind the ambitious decarbonisation goals set by 2050, due to various barriers:

Image: Second S

Fragmented decision-making processes

© Uncertainty of long-term benefits of renovation investments

Need to design, demonstrate, validate, and replicate integrated renovation packages for the efficient, sustainable and inclusive energy use.

IN THIS CONTEXT, IT'S NECESSARY TO..

Design, demonstrate, validate and replicate **innovative renovation packages** to promote **Efficient, Sustainable and Inclusive Energy** (**ESIE**) in the building industry.

How?

© Creation of collaborative and innovative business models.

Incentivisation and **behavioural change** models.

^O Incorporation of a **digital currency**, **green-euro**, (€G).

Mapping and **understanding** the **complex interplay** between the different stakeholders.

OUR APPROACH

Constitute **Green-Euro** as a retail Central **Bank Digital** Currency (CBDC)

Innovative renovation financing approaches

narrative

Online marketplace, (One-Stop-**Shop**) offering advice

Direct contact with consumers through the value chain of stakeholders

Gamified app user interaction and continuous motivation through an easyto-understand visualisation

Facilitate access to "packaged" renovation services

Collective and rewards

RESEARCH OBJECTIVES

Contribute to the development of innovative financial means and business models:

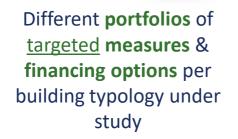
- Provide robust data-driven insights and quantifications on the impacts of different renovation packages.
- ✓ Identify solutions adaptable to diverse contexts and expedite their replication across the EU.
- ✓ Enable relevant stakeholders to assess the economic viability, energy savings potential and environmental impact of different renovation packages.
- ✓ Outcomes that facilitate well-informed policy and decision-making.
- ✓ Overcome barriers to the acceleration of the Renovation Wave and the achievement of EU decarbonisation goals.

Use data from installed sensors AI and data-driven techniques

Employ Social Sciences and Humanities approaches for holistic engagement

Provide simulation data, "predict" what will happen in different future scenariosrecommendations to optimise renovation

impacts


Compare and validate after the renovation is carried-out

HOW ARE THE RESEARCH OBJECTIVES MET?

- ✓ Analyse the cost-effectiveness of different portfolios of measures and financing schemes in the real-life pilots under study.
- ✓ Evaluate the performance of different conventional measures in terms of their long-term savings.
- ✓ Focus on aspects of energy poverty and assessment of the economic benefits of each measure at a disaggregated level.

THE MODEL

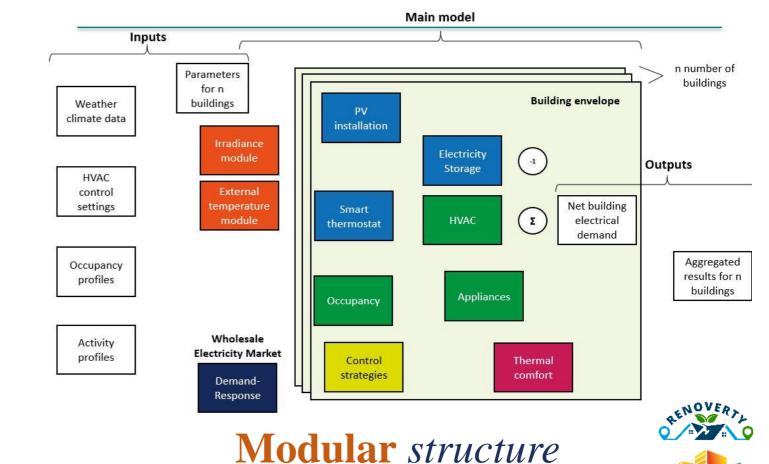
Energy Conversion and Management Volume 205, 1 February 2020, 112339

A modular high-resolution demand-side management model to quantify benefits of demand-flexibility in the residential sector

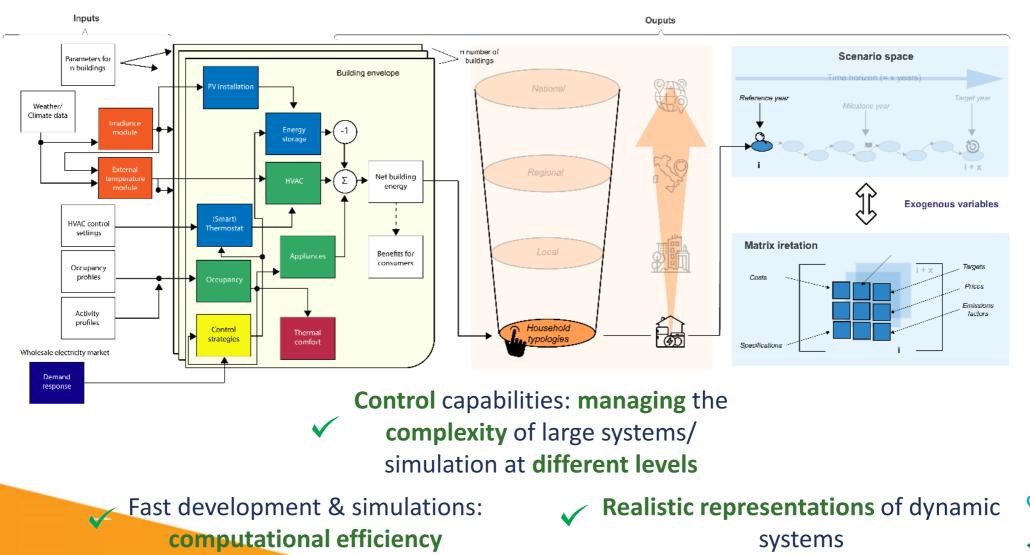
Vassilis Stavrakas, Alexandros Flamos ዳ 🖾

Currently applied and further developed in *multiple EC-funded H2020*, *HE*, and *LIFE* projects

Building sector


Energy demand simulation model **Benefits & limitations** of demandflexibility primarily for **consumers** & other **power actors** involved

MODEL CHARACTERISTICS (1/2)


Main principles of component- & modular-based system modelling approach

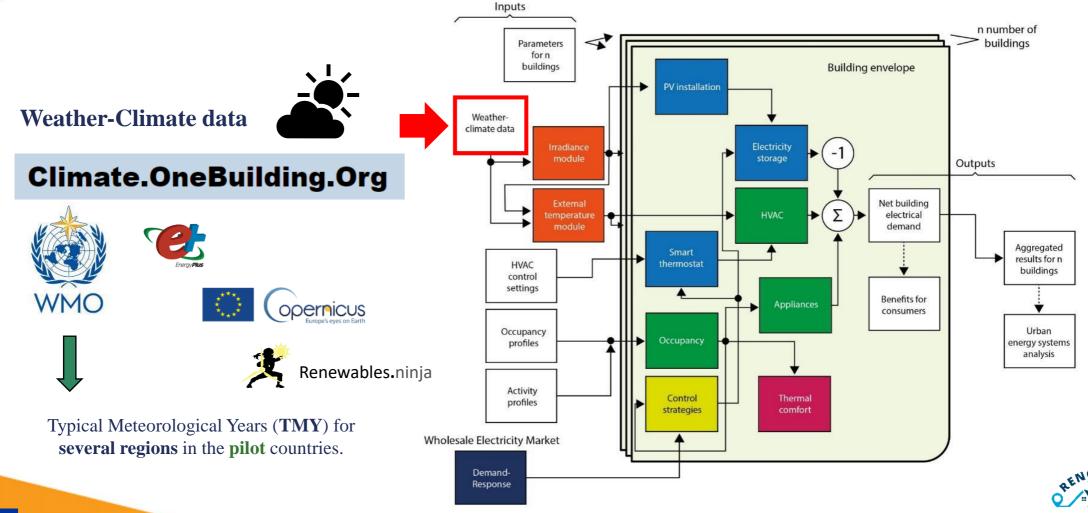
- Interdependence of decisions within modules
- Independence of decisions
 between modules
- Hierarchical dependence of modules on components embodying <u>standards</u> & <u>design</u> rules

FORTESIE

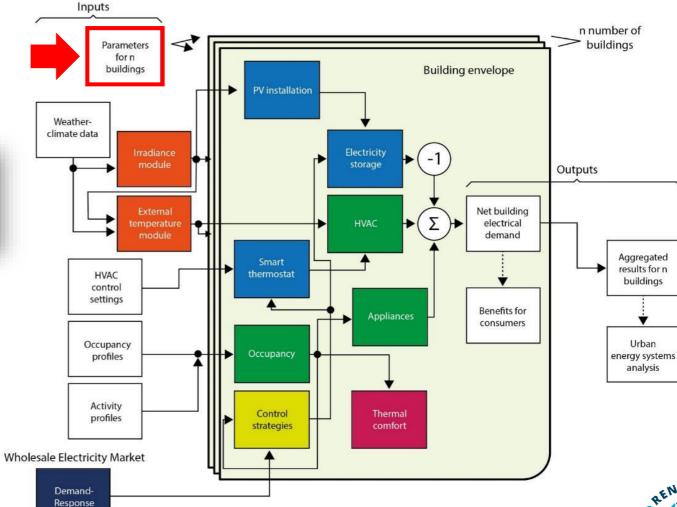
MODEL CHARACTERISTICS (2/2)

4VO VF

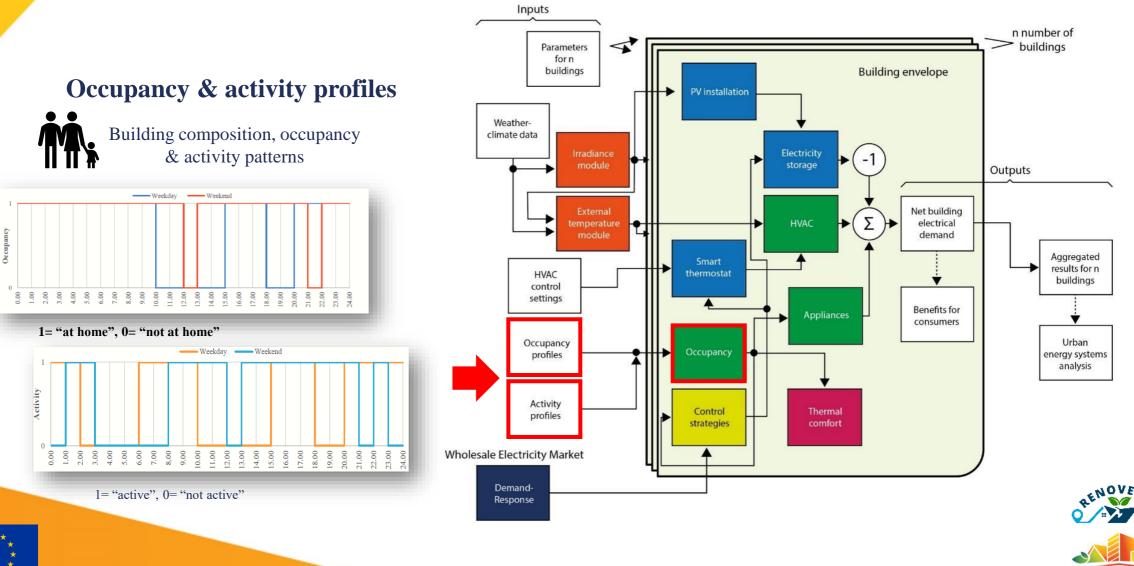
How is the model employed in this application?

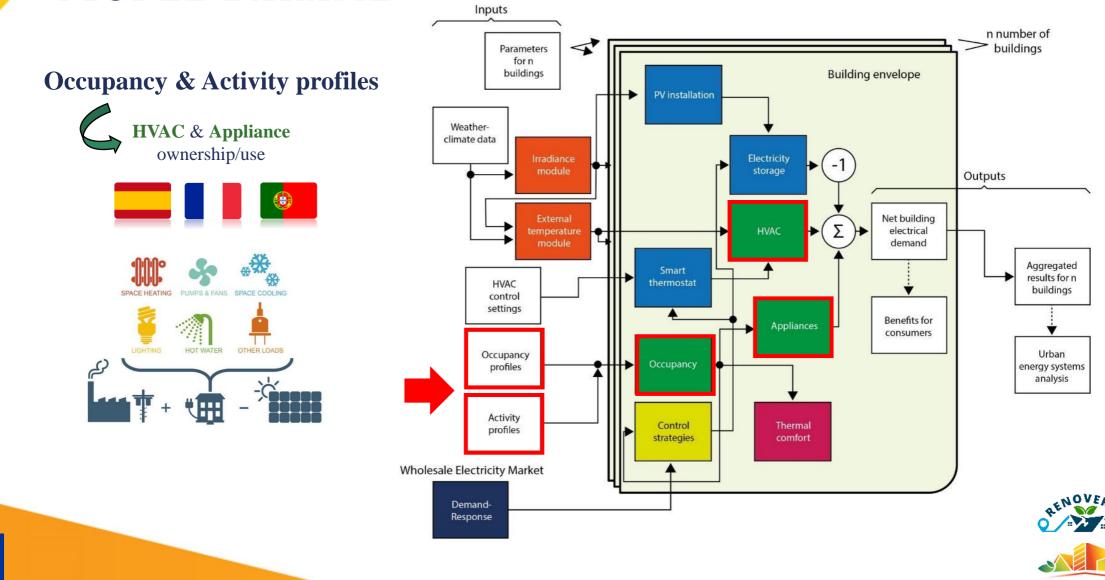

(e.g., necessary inputs, incorporation to the model and interaction between them)

MODEL PARAMETERISATION (1/4)


MODEL PARAMETERISATION (2/4)

Building parameters


 → Use of real-life pilot data from the experts working/ following each pilot case Construction year Type of building No. of floors Total floor area, Height Total roof area Total walls area Total windows area U-values



MODEL PARAMETERISATION (3/4)

FORTESIE

MODEL PARAMETERISATION (4/4)

FORTESIE

How are future situation scenarios formulated and evaluated?

FUTURE SITUATION SCENARIOS (1/3)

Evaluate the **performance** & **replicability** potential of **conventional Energy Efficiency Measures (EEMs)**

Heating technology change:

Substitution of fossil fuel boilers with efficient & environmentally friendly technologies (e.g., heat pumps, etc.)

✓ Long-term energy savings
 ✓ Sustainability
 ✓ Risk

✓ Return of investment

 $LCSE = \frac{(CRF * Cost_{investment}) + Cost_{0\&M}}{Energy Svings (kWh)}$

assessing **benefits** of each measure at a **disaggregated** (households-neighbourhood) level

particularities of energy poor households

customer profiles

providing **investors**, **consumers** & other potential **end-users** with useful insights

FUTURE SITUATION SCENARIOS (2/3)

Evaluate the **performance** smart (EEMs)

FUTURE SITUATION SCENARIOS (3/3)

Demand-response

Algorithms that illustrate the **decision-making** framework and **solve** the dynamic pricing problem considering both service provider's profit and consumers' costs.

Electricity market Input Environment Output 3-variable vector $S = [s_1, s_2, s_3]$ Reward **Best Action** • *s*₁ - System Marginal Price (SMP) Optimal mix of signals s_2 - demand forecast • Algorithm • s_3 - actual demand State Agents Price-based demandresponse signals based on Utilities/ Retailers n python realistic market values [(• **Reinforcement learning** algorithms

Thermal comfort

Appropriate indoor thermal conditions and temperature ranges according to **thermal comfort standards.**

	Thermal sta	ate of the body as a whole			
Category	PPD (%)	PMV	Explanation		
I	<6	-0.2 < PMV < +0.2	High level of expectation: recommended for spaces occupied by very sensitive and fragile persons with special requirements like handicapped, sick children, elderly persons, etc.		
II	<10	-0.5 < PMV < +0.5	Normal level of expectation: used for new buildings and renovations.		
III	<15	-0.7 < PMV < +0.7	Acceptable, moderate level of expectation: used for existing buildings.		
IV					
(a)	<20	-1 < PMV < +1	Marginal level of expectation: values that should only be accepted for a very limited part of the day.		
(b)	>20	$PMV \le -1$ or $PMV > +1$	Inacceptable level of expectation: values outside the criteria for the above categories, that should only be accepted for a very limited part of the year.		

and finally.... What about the simulation process and results?

CHOSEN PILOT CASES

Results from 3 neighbouring countries (France, Portugal, Spain)

Meaningful to compare

PILOT CASE 3 - PORTUGAL: SPECIFICATIONS

Country: Portugal Region: Torres Vedras

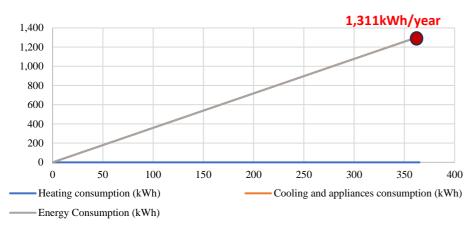
Type of	building/usage:	Single	Family House
---------	-----------------	--------	--------------

Year of Construction: 1955

Building size: 1 Basement Level

Total floor area: 30m²

Prior Situation: Construct	tion features (U-values)(W/m²/K)		
Uwall:	1.80		
Ufloor:	1.00		
Uroof:	0.99		
Uwindow:	4.33		
Prior Situation: I	Existing Building systems		
Heating system:	non existent		
Nominal capacity:	non existent		
COP (if available):	non existent		
Cooling system:	non existent		
Nominal capacity:	non existent		
EER (if available):	non existent		
Lighting equipment:	4 simple ceiling lamps and 3 table lamps		
Lighting equipment capacity:	traditional 50W lamps		


Future situation scenarios: Measures to be modelled

Heating system change/upgrade Cooling system change/upgrade	Heat Pump to provide hotwater and Hvac to heat the air Hvac
Building envelope upgrades	Thermal Insulation with ETICs, Insulation in roof area, replacing windows for double glazed with thermal break
Upgrade of lighting system	Replacing all the bulbs with LED lightning
Smart systems	Solar panel installation
Thermal comfort according to	
standards	Yes QENOVER ,

PILOT CASE 3 - RESULTS: BASELINE SCENARIO

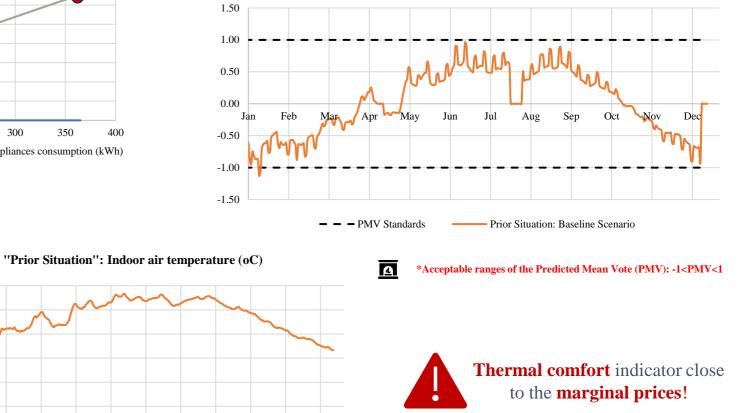
10

5

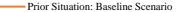
Jan

Feb

Mar


Apr

May


Jun

Prior Situation: Baseline Scenario

Thermal Comfort Indicator: PMV* (%)

Jul

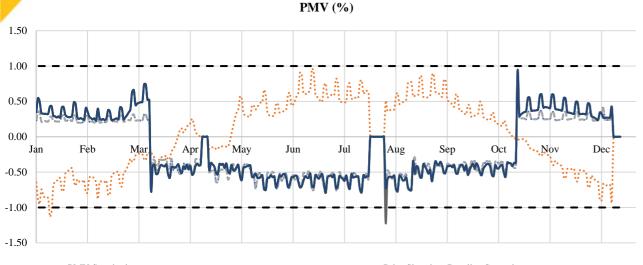
Aug

Sep

Oct

Nov

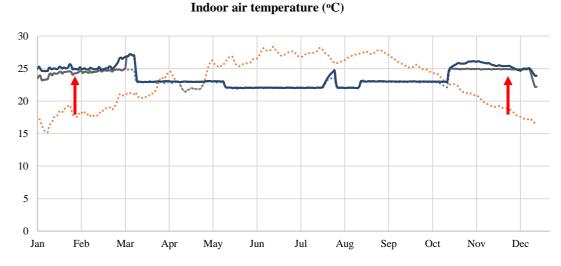
Dec


*** * * * * **Torres Vedras**

PILOT CASE 3 RESULTS - FUTURE SITUATION SCENARIOS

Future situation Scenarios	Energy efficiency measures implemented		
1	Oil boiler & A/C		
2	Oil boiler, A/C, Renovation (thermal insulation & windows upgrade)		
3	Oil boiler, A/C, Renovation (thermal insulation & windows upgrade), LED lighting		
4	Heat pump		
5	Heat Pump, Renovation (thermal insulation & windows upgrade), LED lighting		
6	Heat Pump, Renovation (thermal insulation & windows upgrade), LED lighting, PV installation		

PILOT CASE 3 RESULTS: INDOOR CONDITIONS


Thermal comfort and internal conditions in the future situation scenarios

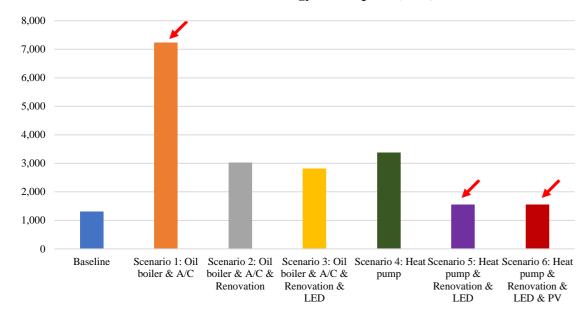
- – PMV Standards
 Future Situation 1: Oil boiler & A/C
 ––– Future Situation 3: Oil boiler & A/C & Renovation & LED
 ––– Future Situation 5: Heat Pump & Renovation & LED
- ······ Prior Situation: Baseline Scenario
- ---- Future Situation 2: Oil boiler & A/C & Renovation
- Future Situation 6: Heat Pump & Renovation & LED & PV

Cooler internal conditions in the summer!

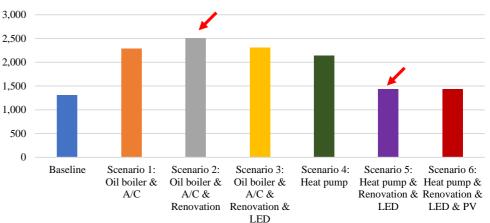
Warmer internal conditions in the winter!

······ Prior Situation: Baseline Scenario

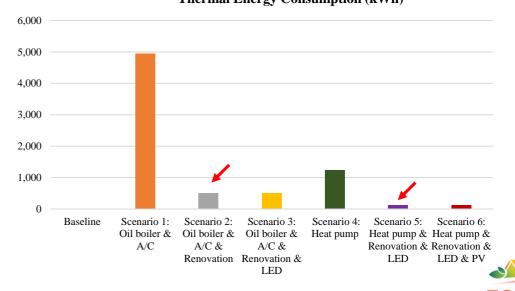
---- Future Situation 2: Oil boiler & A/C & Renovation

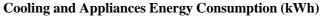

Future Situation 6: Heat Pump & Renovation & LED & PV

Future Situation 1: Oil boiler & A/C
Future Situation 3: Oil boiler & A/C & Renovation & LED
Future Situation 5: Heat Pump & Renovation & LED



PILOT CASE 3 RESULTS: ENERGY CONSUMPTION


Final Energy, Cooling and appliances, and Thermal energy consumption



Total Energy consumption (kWh)

Thermal Energy Consumption (kWh)



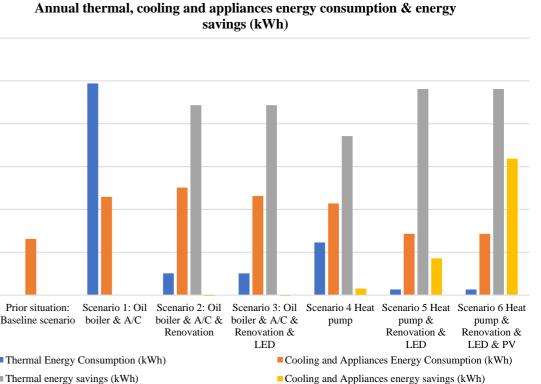
PILOT CASE 3 RESULTS: ENERGY SAVINGS (1/2)

Total annual energy consumption and energy savings

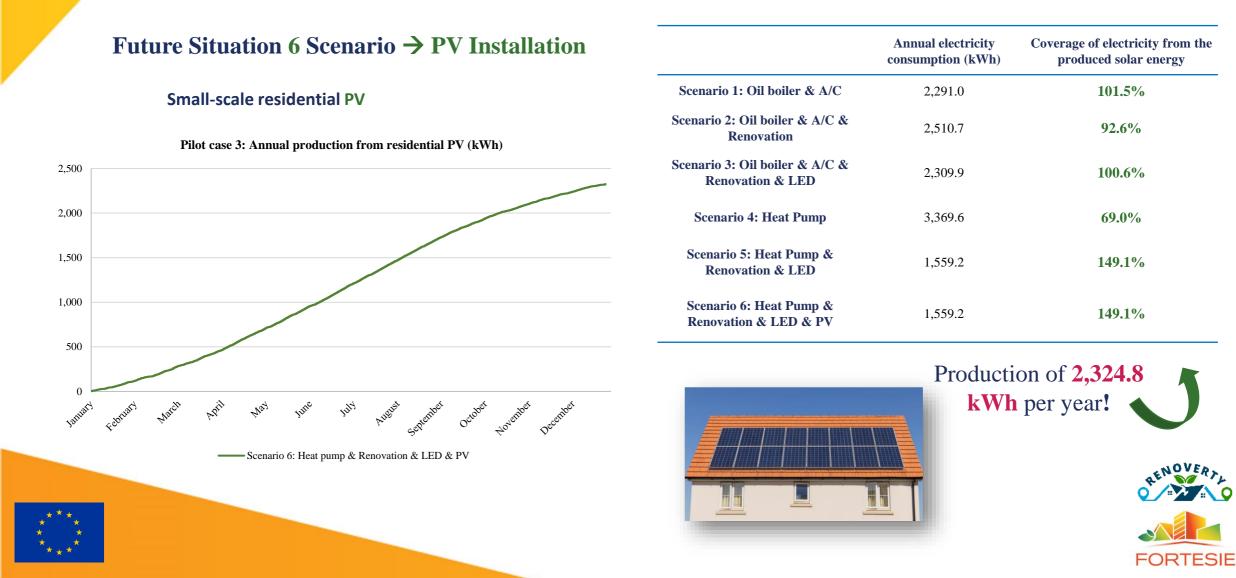
	Total energy consumption (kWh)	Total energy savings (kWh
Prior Situation: Baseline Scenario	1,311. 1	
Future situation scenario 1: Oil boiler & A/C	7,231.4	
Future situation scenario 2: Oil boiler & A/C & Renovation	3,017.5	4,213.8
Future situation scenario 3: Oil boiler & A/C & Renovation & LED	2,816.8	4,414.5
Future situation scenario 4: Heat Pump	3,369.7	3,861.7
Future situation scenario 5: Heat Pump & Renovation & LED	1,559.2	5,672.1
Future situation scenario 6: Heat Pump & Renovation & LED & PV	1,559.2	7,997.0

Lnergy savings are calculated compared to Scenario 1!

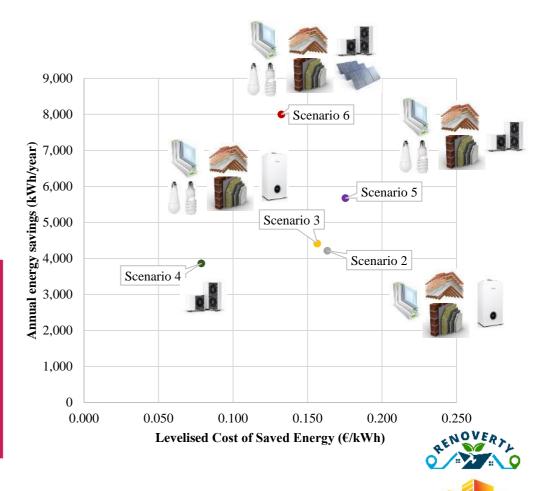
Total Energy consumption (kWh)


No heating system in the baseline scenario!

PILOT CASE 3 RESULTS: ENERGY SAVINGS (2/2)


Thermal, Cooling & Appliances, and overall annual energy consumption & energy savings

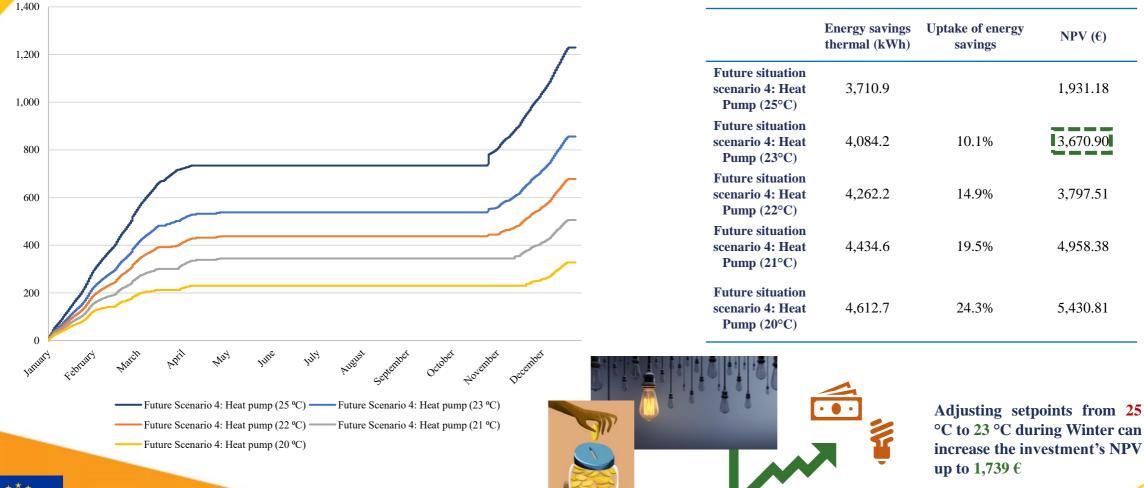
	Energy savings thermal (kWh)	Energy saving cooling and appliances (kW		6,000	Annual thermal, cooling and applian savings (
Future situation scenario 2: Oil boiler & A/C & Renovation	4,433.6	-219.7		5,000	
Future situation scenario 3: Oil boiler & A/C & Renovation & LED	4,433.4	-18.9	Impact of LED lighting (~200 kWh annually)	4,000	
Future situation scenario 4: Heat Pump	3,710.9	150.8		3,000	
Future situation scenario 5: Heat Pump & Renovation & LED	4,812.2	859.9	Effects of building envelope upgrades!	2,000	
Future situation scenario 6: Heat Pump & Renovation & LED & PV	4,812.2	3,184.7	Impact of the PV installation!	0	Prior situation: Scenario 1: Oil Scenario 2: Oil Scenario Baseline scenario boiler & A/C boiler & A/C & boiler Renovation Renov
	I I	Energy saving	s are calculated compared Scenario 1!	d to	 Thermal Energy Consumption (kWh) Thermal energy savings (kWh)



PILOT CASE 3 RESULTS: PV GENERATION

PILOT CASE 3 RESULTS: TECHNOECONOMIC ANALYSIS

	Total energy savings (kWh)	Net Present Value (NPV) (€)	Payback Period (PP) (years)	Levelised Cost of Saved Energy (LCSE) (€/kWh)
Prior Situation: Baseline Scenario	0	0		
Future situation scenario 1: Oil boiler & A/C	0	0		
Future situation scenario 2: Oil boiler & A/C & Renovation	4,213.8	-1,267.02	31.4	0.163
Future situation scenario 3: Oil boiler & A/C & Renovation & LED	4,414.5	-381.37	26.6	0.157
Future situation scenario 4: Heat Pump	3,861.7	1,931.18	15.0	0.079
Future situation scenario 5: Heat Pump & Renovation & LED	5,672.1	-431.93	26.2	0.175
Future situation scenario 6: Heat Pump & Renovation & LED & PV	7,997.0	9,401.98	13.0	0.132
	Scenario 6	offers the highest NPV		enario 4 is the most -efficient in terms of LCSE.



FORTESIE

PILOT CASE 3 RESULTS: SETPOINT ADJUSTMENTS

Cumulative thermal energy consumption (kWh)

CROSS-PILOT COMPARISON (1/6)

Pilot case 1 Country: Spain Region: Gijon region

Type of building/usage: Multi Family House

Year of Construction: 1958

Building size: Ground floor + 2 floors

Total floor area: 80m² per apartment

Heating system: Electric heaters

Country: France Region: Grand Est region Type of building/usage: Single Family House Year of Construction: 1950 to 1980 Building size: Basement level + 2 ground floors Total floor area: 82m² Heating system: Oil boiler

Pilot cases 3-4Country: PortugalType of building/usage: Single Family HouseYear of Construction: 1988Building size: 2-storey building (ground + first floor)Total floor area: 188 m²

CROSS-PILOT COMPARISON (2/6)

Pilot case 1 (Gijon region - Spain)

Pilot case 2 (Grand-Est region - France)

<u> </u>								_	
Scenario	Measures Impleme	nted	Sc	cenario	M	leasures Implemen	ited		
1				1		Heat pump		Common future scenar	
2			2Renovation3Heat pump & Renovation			 the analysed demo cases: Renovation (e.g., building envelope upgrades) 			
3					ation				
4	Heat pump & Renov	vation		4	Heat p	oump & Renovation	ı & LED	 Heat Pump Heat pump & Renovati 	ion & LED
5 Heat	at pump & Renovation &	z LED & PV	•	5	Heat pum	p & Renovation &	LED & PV	& PV	
	Scenario	Measu	res Imp!	lemented		Scenario		Measures Implemented	
	1	Oil	boiler &	ż A/C		1		Renovation	
Let's remember	2	Oil boiler & A/C & Renovation		z Renovation		2	R	enovation & LED lighting	
• Pilot case 3	3		& A/C & LED ligi	& Renovation shting		3	Renovation	n & LED lighting & PV installation	
	4	J	Heat pun	mp		4		Heat pump	
	5		ımp & Ro LED ligi	Renovation hting		5	Η	Heat Pump & Renovation & LED lighting	ENOVERT
**	6		-	enovation & V installation		6		eat Pump & Renovation & D lighting & PV installation	
*	Pilot ca	se 3 (Torre	es Vec	lras - Po i	rtugal)		Pilot ca	se 4 (Portugal)	FORTESIE

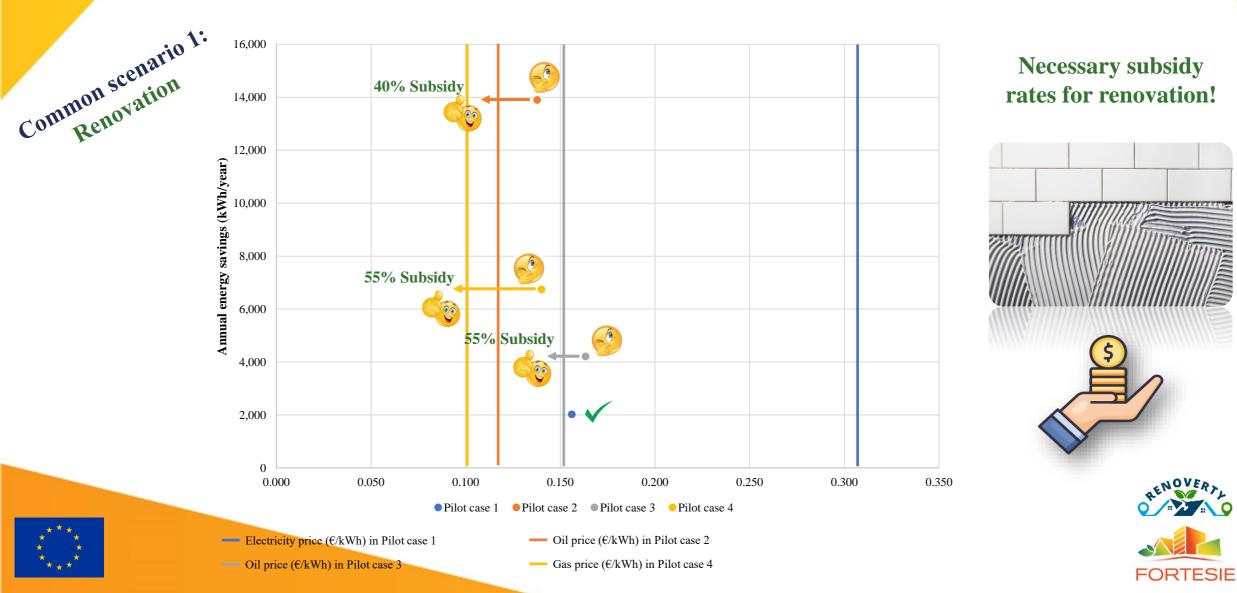
CROSS-PILOT COMPARISON (3/6)

Common scenario 1: Renovation

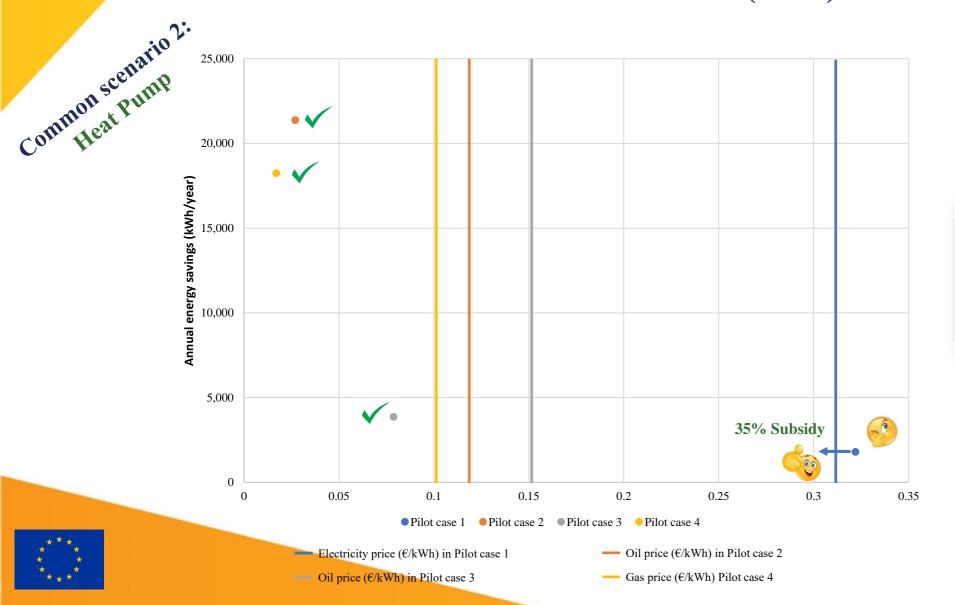
	Total energy savings (kWh)	Total energy savings (%)	LCSE (€/kWh)
Pilot case 1	2,022.93	21.2%	0.156
Pilot case 2	13,905.12	43.4%	0.138
Pilot case 3	4,213.84	58.3%	0.163
Pilot case 4	6,743.2	22.2%	0.140

Common scenario 3: Heat pump & Renovation & LED & PV

	Total energy savings (kWh)	Total energy savings (%)	LCSE (€/kWh)
Pilot case 1	4,894.03	51.2%	0.189
Pilot case 2	27,804.08	86.8%	0.092
Pilot case 3	7,996.98	110.6%	0.132
Pilot case 4	29,607.7	97.4%	0.46

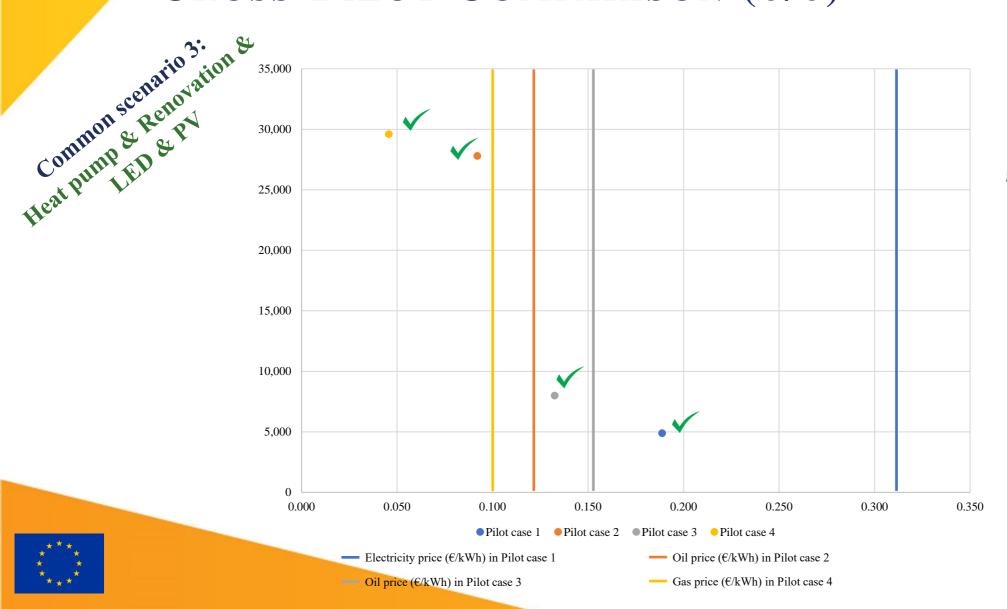

Common scenario 2: Heat Pump

	Total energy savings (kWh)	Total energy savings (%)	LCSE (€/kWh)
Pilot case 1	1,788.0	18.7%	0.322
Pilot case 2	21,372.7	66.7%	0.027
Pilot case 3	3,861.7	53.4%	0.079
Pilot case 4	18,246.4	60.0%	0.017


The LCSE for each future scenario is compared with the energy price of the baseline scenario's energy carrier.

CROSS-PILOT COMPARISON (4/6)

CROSS-PILOT COMPARISON (5/6)


Electrification of heating systems

CROSS-PILOT COMPARISON (6/6)

Benefits of coupling energy efficiency actions with renewable generation despite the higher upfront costs

CONCLUSIONS AND NEXT STEPS

Useful findings and remarks

- ✓ Prioritise the substitution of fossil fuel boilers with heat pumps the most beneficial in terms of energy savings and economic viability.
- Differentiate the renovation packages according to the typology
 single family houses > building envelope upgrades
 - **♦ multi family houses** \rightarrow installation of **heat pumps**.
- ✓ Coupling energy efficiency actions with renewable generation offers significant benefits for households, despite the higher upfront costs.
- ✓ Quantification of behavioural changes (e.g., adjusting heating and cooling setpoints) → changes in the investment's profitability (NPV) and technoeconomic performance

Next research steps:

- Extend the analysis to more countries/ regions across the EU.
- □ Focus on more real-life pilots.
- Expedite renovation packages for upscale across EU.

FOR MORE INFORMATION

Piraeus

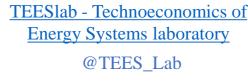
University of Piraeus

Dr. Vassilis Stavrakas 1st Senior Research Associate at TEESlab UPRC & Chief Financial Officer at IEECP

Contact us:

papantonis@ieecp.org vasilis@ieecp.org

Institute for European Energy and Climate Policy Foundation (IEECP)



https://ieecp.org

in

https://teeslab.unipi.gr/

This work has received funding from the Horizon Europe research and innovation programme project "FORTESIE" (Grant Agreement No. 101080029) and the LIFE programme project "RENOVERTY" (Grant Agreement No. 101077272). The authors would like to acknowledge the support from the EC. The content is the sole responsibility of its authors and does not necessary reflect the views of the EC.

