

Sponsored by

This work has received funding from the Horizon Europe research and innovation programme project "FORTESIE" (Grant Agreement No. 101080029) and the LIFE programme project "RENOVERTY" (Grant Agreement No. 101077272). The authors would like to acknowledge the support from the EC. The content is the sole responsibility of its authors and does not necessary reflect the views of the EC.

FORTESIE

EECP INSTITUTE FOR EUROPEAN ENERGY AND CLIMATE POLICY

ADVANCING INTEGRATED AND SMART RENOVATION PACKAGES FOR EFFICIENT, SUSTAINABLE, AND INCLUSIVE ENERGY USE: A MODELLING ANALYSIS OF REAL-LIFE RESIDENTIAL PILOTS ACROSS THE EUROPEAN UNION

Dr. Vassilis Stavrakas, Mr. Dimitris Papantonis, Dr. Vlasios Oikonomou, Prof. Dr. Alexandros Flamos

INTRODUCTION & PROBLEM STATEMENT (1/3)

Buildings are accounting for nearly **40%** of final **energy consumption** in the EU.

50 million consumers struggle to keep their homes **adequately** warm.

Annual renovation rate of the building stock varying from **0.4** to **1.2%**.

More than **220 million building units**, representing **85%** of the EU's building stock, were built **before 2001**.

85-95% of the buildings that exist today will still be standing in 2050.

The building sector has significant room for decarbonisation.

Need for increased energy efficiency renovation efforts

INTRODUCTION & PROBLEM STATEMENT (2/3)

Towards the uptake of energy efficiency in the building sector

- Renovation Wave, as part of the EU Green Deal, aims to double the annual energy renovation rate by 2030.
 - **[©]** Aim to renovate **35 million inefficient buildings** by **2030**.
- **©** Fit For 55 sets a target of reducing emissions by at least 55% by 2030.
- REPowerEU changes the future of fossil fuel use in buildings radically aiming to enhance efforts on saving energy, diversifying energy supplies and producing clean energy.

INTRODUCTION & PROBLEM STATEMENT (3/3)

EU lags behind the ambitious decarbonisation goals set by 2050, due to various barriers:

Financial Constraints, Split incentives

Fragmented decision-making processes

© Uncertainty of long-term benefits of renovation investments

Need to design, demonstrate, validate, and replicate integrated renovation packages for the efficient, sustainable and inclusive energy use.

RESEARCH OBJECTIVES

- ✓ Provide robust data-driven insights and quantifications on the impacts of different renovation packages.
- ✓ Identify solutions adaptable to diverse contexts and expedite their replication across the EU.
- ✓ Enable relevant stakeholders to assess the economic viability, energy savings potential and environmental impact of different renovation packages.
- ✓ Outcomes that facilitate well-informed policy and decision-making.
- ✓ Overcome barriers to the acceleration of the Renovation Wave and the achievement of EU decarbonisation goals.

PILOT CASES

10th International Conference on Smart Energy Systems 10-11 September 2024 #SESAAU2024

- ✓ 3 neighbouring countries are selected (France, Portugal, Spain)
- ✓ Meaningful to compare

HOW ARE THE RESEARCH OBJECTIVES MET?

Integrated renovation packages

- Evaluate the performance of different conventional measures in terms of their long-term savings.
- ✓ Focus on aspects of energy poverty and assessment of the economic benefits of each measure at a disaggregated level.
- ✓ Inclusion of measures that improve demand-side management and optimal control of heating, ventilation, and air-conditioning systems.

THE MODEL

Building sector

Energy demand simulation model Benefits & limitations of demand-flexibility primarily for consumers & other power actors involved

10th International Conference on Smart Energy Systems 10-11 September 2024 #SESAAU2024

Energy Conversion and Management Volume 205, 1 February 2020, 112339

A modular high-resolution demand-side management model to quantify benefits of demand-flexibility in the residential sector

Vassilis Stavrakas, Alexandros Flamos Ӓ 🖾

Currently **applied** and **further developed** in multiple **EC-funded H2020**, **HE**, and **LIFE** projects.

MODEL CHARACTERISTICS (1/2)

Main **principles** of **component-** & **modular-**based system modelling approach.

- Interdependence of decisions within modules.
- Independence of decisions between modules.
- Hierarchical dependence of modules on components embodying <u>standards</u> & <u>design rules</u>.

MODEL CHARACTERISTICS (2/2)

- Incremental modeling: sub-models in multiple levels.
- Control capabilities: managing the complexity of large systems.
- Realistic representations of dynamic systems.
- Fast development & simulations: computational efficiency.

How is the model employed in this application?

(e.g., necessary inputs, incorporation to the model and interaction between them)

PRIOR SITUATION - BASELINE SCENARIO (1/4) Inputs n number of \triangleleft > buildings Parameters for n buildings **Building envelope PV** installation Weather-Climate data Weatherclimate data Electricity Climate.OneBuilding.Org -1 module storage Outputs Net building External electrical module demand Aggregated Smart results for n HVAC thermostat WMO buildings opernicus control settings Benefits for Appliances consumers Occupancy Urban Renewables.ninja profiles energy systems analysis Typical Meteorological Years (TMY) for several Activity Control Thermal profiles regions in the pilot countries. strategies comfort Wholesale Electricity Market FORTESIE Demand-Response

PRIOR SITUATION - BASELINE SCENARIO (2/4)

PRIOR SITUATION - BASELINE SCENARIO (3/4)

PRIOR SITUATION - BASELINE SCENARIO (4/4)

What about the parameterisation process?

PRIOR SITUATION: MODEL PARAMETERISATION

 → Tailor-made approach to capture pilot specificities
 Data acquisition template for the experts working/ following each pilot case.

Pilot weather/ climate data Building characteristics Occupancy/activity profiles HVAC and appliance ownership/ use

	Weather/ Climate characteristics		
Country:	Portugal		
Region :	Torres Vedras		
	Building characteristics		
Type of building/ usage:	Single Family House		
Year of Construction or Renovation:		1955	
Building size:	1 Basement Level		
Total Floor area of the building		30	
Total area of external walls of the buildings :		51	
Total area of Wall1:		7	
Total area of Wall2:		14	
		Prior Situation: Existing Building system	ns
Total Boof area of the building:	2 si Heating system:	non existent	
Windows system:	Nominal capacity:	non existent	
Total windows area:	COP (if available):	non existent	
Total area of Window1:	Cooling system:	non existent	
Total area of Window2:	Nominal capacity:	non existent	
Total area of Window3:	EER (if available):	non existent	
Total area of Window4:	Lighting equipment:	4 simple ceiling lamps and 3 table	amps
	Lighting equipment capacity:	traditional 50W Jamps	
Prior Situa	tion: (additional both lamps	
Uwall:	Euturo "to bo" Situation: Convotional an	d Smart Enorgy Efficiency Measures to be	modelled (please write down the preferred
Ufloor:	ruture to be situation. convetionaran	in smart chergy criticiency measures to be	induction (please write down the preferred
Uroof:	Heating system shange/upgrade	Heat Rump to provide betwater ap	d Uvas to heat the air
Uwindow:	Cooling system change/upgrade	Heat Pump to provide notwater an	d hvac to fleat the all
	Cooling system change/upgrade	HVac	
	Building envelope upgrades	Inermal Insulation with ha ETICs, in	nsulation in root area, replacing windows for
		double glazed with thermal break	
	Upgrade of lighting system	Replacing all the bulbs with LED lig	htning
	Smart systems	Solar panel instalation	
	Thermal comfort according to standards	Yes	
		Other parameters	
	Occupancy:	2 people	
	Occupants' indicative working schedule:	Unemployed	
	,		

How are future situation scenarios formulated and evaluated?

FUTURE SITUATION SCENARIOS

Evaluate the performance & replicability potential of different energy efficiency measures

- ✓ Long-term energy savings
 ✓ Sustainability
 ✓ Risk
- ✓ Return of investment

L

Technoeconomic assessment

$$CSE = \frac{(CRF * Cost_{investment}) + Cost_{0\&M}}{Energy Savings (kWh)}$$

Future situation scenarios formulated according to each pilot's needs!

leating system change/upgrade	Heat Pump to provide hotwater and Hvac to heat the air
Cooling system change/upgrade	Hvac
Building envelope upgrades	Thermal Insulation with na ETICs, Insulation in roof area, replacing windows for double glazed with thermal break
Jpgrade of lighting system	Replacing all the bulbs with LED lightning
Smart systems	Solar panel instalation
Thermal comfort according to standards	Yes

Future "to-be" Situation: Convetional and Smart Energy Efficiency Measures to be modelled (please write down the preferred

 Future "to-be" Situation: Convetional and Smart Energy Efficiency Measures to be modelled (please write down the preferred ones)

 Heating system change/upgrade
 replacement of oil boilers with heat pumps

 Cooling system change/upgrade
 no

 Building envelope upgrades
 thermal insulation, double-glazed windows, ventilation

 Upgrade of lighting system
 replacement of traditional bulbs with LEDs

 Smart systems
 smart meters

 Thermal comfort according to standards
 yes

and finally....

What about the simulation process and results?

Uwall:

Ufloor:

Uroof:

Uwindow:

1.80

1.00

0.99

4.33

PILOT CASE 3- PORTUGAL: SPECIFICATIONS

Country: Portugal Region: Torres Vedras

Type of building/usage: Single Family House

Year of Construction: 1955

Building size: 1 Basement Level

Total floor area: 30m²

Building envelope upgrades

Upgrade of lighting system Smart systems Thermal comfort according to standards

Prior Situation: Existing Building systems			
Heating system:	non existent		
Nominal capacity:	non existent		
COP (if available):	non existent		
Cooling system:	non existent		
Nominal capacity:	non existent		
EER (if available):	non existent		
Lighting equipment:	4 simple ceiling lamps and 3 table lamps		
Lighting equipment capacity:	traditional 50W lamps		

Future situation scenarios: Measures to be modelled

Yes

Prior Situation: Construction features (U-values)(W/m²/K)

- Heat Pump to provide hotwater and Hvac to heat the air Hvac Thermal Insulation with ETICs, Insulation in roof area, replacing
- windows for double glazed with thermal break
- Replacing all the bulbs with LED lightning Solar panel installation

SIMULATION RESULTS: BASELINE SCENARIO

FUTURE SITUATION SCENARIOS

Pilot Case 3: Portugal

Scenario	Measures
1	Oil boiler & A/C
2	Oil boiler, A/C, Renovation (thermal insulation & windows upgrade)
3	Oil boiler, A/C, Renovation (thermal insulation & windows upgrade), LED lighting
4	Heat pump
5	Heat Pump, Renovation (thermal insulation & windows upgrade), LED lighting
6	Heat Pump, Renovation (thermal insulation & windows upgrade), LED lighting, PV installation

SIMULATION RESULTS: FUTURE SCENARIOS (1/6)

SIMULATION RESULTS: FUTURE SCENARIOS (2/6)

Final Energy, Cooling and appliances, and Thermal energy consumption

Total Energy consumption (kWh)

Cooling and Appliances Energy Consumption (kWh)

FORTESIE

SIMULATION RESULTS: FUTURE SCENARIOS (3/6)

Total annual energy consumption and energy savings

	Total energy consumption (kWh)	Total energy savings (kWh)	
Prior Situation: Baseline Scenario	1,311. 1		
Scenario 1: Oil boiler & A/C	7,231.4		
Scenario 2: Oil boiler & A/C & Renovation	3,017.5	4,213.8	
Scenario 3: Oil boiler & A/C & Renovation & LED	2,816.8	4,414.5	
Scenario 4: Heat Pump	3,369.7	3,861.7	
Scenario 5: Heat Pump & Renovation & LED	1,559.2	5,672.1	
Scenario 6: Heat Pump & Renovation & LED & PV	1,559.2	7,997.0	

Energy savings are calculated compared to Scenario 1!

SIMULATION RESULTS: FUTURE SCENARIOS (4/6)

Thermal, Cooling & Appliances, and overall annual energy consumption & energy savings

SIMULATION RESULTS: FUTURE SCENARIOS (5/6)

Scenario 6 \rightarrow PV Installation

Small-scale residential PV (nominal power: 2kW, surface: 11m²)

	Annual electricity consumption (kWh)	Coverage of electricity from the produced solar energy
Scenario 1: Oil boiler & A/C	2,291.0	101.5%
Scenario 2: Oil boiler & A/C & Renovation	2,510.7	92.6%
Scenario 3: Oil boiler & A/C & Renovation & LED	2,309.9	100.6%
Scenario 4: Heat Pump	3,369.6	69.0%
Scenario 5: Heat Pump & Renovation & LED	1,559.2	149.1%
Scenario 6: Heat Pump & Renovation & LED & PV	1,559.2	149.1%

SIMULATION RESULTS: FUTURE SCENARIOS (6/6)

	Total energy savings (kWh)	Net Present Value (NPV) (€)	Payback Period (PP) (years)	Levelised Cost of Saved Energy (LCSE) (€/kWh)
Prior Situation: Baseline Scenario	0	0		
Scenario 1: Oil boiler & A/C	0	0		
Scenario 2: Oil boiler & A/C & Renovation	4,213.8	-1267.02	31.4	0.163
Scenario 3: Oil boiler & A/C & Renovation & LED	4,414.5	-381.37	26.6	0.157
Scenario 4: Heat Pump	3,861.7	1931.18	15.0	0.079
Scenario 5: Heat Pump & Renovation & LED	5,672.1	-431.93	26.2	0.175
Scenario 6: Heat Pump & Renovation & LED & PV	7,997.0	9401.98	13.0	0.132
	Scenario 6 o NPV for tl	ffers the highest he household	Sc cost-ef	enario 4 is the most fficient in terms of LCSE.

SIMULATION RESULTS: CROSS-PILOT COMPARISON (1/5)

Pilot case 1

Country: Spain Region: Gijon region

Type of building/usage: Multi Family House

Year of Construction: 1958

Building size: Ground floor + 2 floors

Total floor area: 80m² per apartment

Heating system: Electric heaters

Pilot case 2

Country: France Region: Grand Est region

Type of building/usage: Single Family House Year of Construction: 1950 to 1980 Building size: Basement level + 2 ground floors Total floor area: 82m² Heating system: Oil boiler

SIMULATION RESULTS: CROSS-PILOT COMPARISON (2/5)

Pilot case 1: (Gijon region - Spain)

Pilot case 2: (Grand-Est region - France)

Scenario	Measures	mplemented	S	cenario	Measures Implemented
1	Renovation		0	1	Heat pump
2	Renovation & PV		0	2	Renovation
3	Heat pump			3	Heat pump & Renovation
4	Heat pump & Renovation			4	Heat pump & Renovation & LED
5	Heat pump & Renovation & LED & PV			5	Heat pump & Renovation & LED & PV
	Scenario		Measur	es Implem	ented
	1		Oil	boiler & A/	/C
	2	Oil boiler, A/C, Renovation (thermal insulation & windows upgrade)			
Let's remember Pilot case 3Oil boiler, A/C, Renovation (thermal insulation LED lighting		lation & windows upgrade),			
scenarios	4	Heat pump			
	5	Heat Pump, Renovation (thermal insulation & windows upgrade), LED lighting			ation & windows upgrade),
	6	Heat Pump, Renovat Ll	on (the D lighti	rmal insula ng, PV inst	ation & windows upgrade), allation

Common future scenarios **across** the three pilot cases:

- Renovation (e.g., building envelope upgrades)
- Heat Pump
- Heat pump & Renovation & LED
 & PV

SIMULATION RESULTS: CROSS-PILOT COMPARISON (3/5)

Common scenario 1: Renovation

Pilot case	Total energy savings (kWh)	Total energy savings (%)	LCSE (€/kWh)	
1. Spain	2,022.93	21.2%	0.156	
2. France	13,905.12	43.4%	0.138	
3. Portugal	4,213.84	58.3%	0.163	

Spain ✓ France, Portugal X

- Gijon region Spain
- Electricity price (€/kWh) in Gijon region Spain
- Oil price (€/kWh) in Grand-Est region France
- Oil price (€/kWh) in Torres Vedras region Portugal

SIMULATION RESULTS: CROSS-PILOT COMPARISON (4/5)

Common scenario 2: Heat Pump

Pilot case	Total energy savings (kWh)	Total energy savings (%)	LCSE (€/kWh)
1. Spain	1,788.0	18.7%	0.322
2. France	21,372.7	66.7%	0.027
3. Portugal	3,861.7	53.4%	0.079

- Electricity price (€/kWh) in Gijon region Spain
- Oil price (€/kWh) in Grand-Est region France
- Oil price (€/kWh) in Torres Vedras region Portugal

SIMULATION RESULTS: CROSS-PILOT COMPARISON (5/5)

Common scenario 3: Heat pump & Renovation & LED & PV

Pilot case	Total energy savings (kWh)	Total energy savings (%)	LCSE (€/kWh)
1. Spain	4,894.03	51.2%	0.189
2. France	27,804.08	86.8%	0.092
3. Portugal	7,996.98	110.6%	0.132

The LCSE for each future scenario is compared with the energy price of the baseline scenario's energy carrier.

France, Portugal, Spain 🗸

CONCLUSIONS AND NEXT STEPS

Useful findings and remarks

- Prioritise the substitution of fossil fuel boilers with heat pumps is deemed to be the most beneficial in terms of energy savings and economic viability, followed by building envelope upgrades.
- Differentiate the renovation packages according to the typology. In single family houses building envelope upgrades are identified as the most beneficial, while in multi family houses the installation of heat pumps.
- Coupling energy efficiency actions with renewable generation can offer significant benefits for households, while ensuring the economic viability of measures with higher upfront costs and enhance their attractiveness.
- Evaluate the performance of different energy efficiency scenarios with the relevant socio-economic context. Compare the result with the local/national energy prices and investment costs to effectively identify their economic viability.

Next research steps:

- Extend the analysis in more countries/ regions across the EU.
- Focus on more residential **typologies**.
- Expedite renovation packages for upscale across EU.

FOR MORE INFORMATION

Dr. Vassilis Stavrakas 1st

Senior Research Associate at TEESlab UPRC & Chief Financial Officer at IEECP

Institute for European Energy and Climate Policy Foundation (IEECP) Greece

Contact me:

vasilis@ieecp.org

Dr. Vassilis Stavrakas

Institute for European Energy and Climate Policy Foundation (IEECP)

<u>@ieecp_org</u>

https://ieecp.org

<u>TEESlab - Technoeconomics of Energy</u> <u>Systems laboratory</u>

@TEES_Lab

https://teeslab.unipi.gr/

Sponsored by

THANK YOU FOR YOUR ATTENTION! ANY QUESTIONS?

Dr. Vassilis Stavrakas, Mr. Dimitris Papantonis, Dr. Vlasios Oikonomou, Prof. Dr. Alexandros Flamos

This work has received funding from the Horizon Europe research and innovation programme project "FORTESIE" (Grant Agreement No. 101080029) and the LIFE programme project "RENOVERTY" (Grant Agreement No. 101077272). The authors would like to acknowledge the support from the EC. The content is the sole responsibility of its authors and does not necessary reflect the views of the EC.

