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Introduction 

TEEM, the TEESlab Modeling suite, is an ensemble of high-resolution energy system simulation and 

optimization models, which comprises of three main models: 

1. the Business Strategy Assessment Model (BSAM),  

2. the Agent-based Technology adOption Model (ATOM), and  

3. the Dynamic high-Resolution dEmand-sidE Management (DREEM) model.  

BSAM is an agent-based electricity wholesale market simulation model which simulates the complex 

operations within a power pool central dispatch Day Ahead Market. The model simulates electricity 

generators as entities who progressively learn to bid their capacities in a day-ahead competitive wholesale 

market, with ultimate goal the maximization of their profits. In parallel, a unit commitment and optimal 

dispatch algorithm calculates the quantities injected by each generation unit, the system marginal price, the 

system costs, as well as, derived outputs such as CO2 emissions and profits of each generator. The model can 

support cost-benefit analysis of future policy and/or technology deployment scenarios. It is very flexible 

since it simulates the power generators as agents that compete with each other and adapt to policy and/or 

market changes.  

ATOM simulates the dynamics of technology adoption among consumers. The model is supported by a 

complete framework for parameter estimation based on historical data, and for the quantification of the 

uncertainty that governs its ability to replicate reality. 

DREEM is a fully integrated dynamic high-resolution model resolving key features that are not found 

together in existing Demand-Side Management (DSM) models. The model serves as an entry point in DSM 

modeling in the building sector, by expanding the computational capabilities of existing Building Energy 

System (BES) models to assess the benefits and limitations of demand-flexibility, primarily for consumers, 

and for other power actors involved. 

and two model plugin toolboxes: 

The Adaptive PolicymakIng Model (AIM) provides real time visualizations of adaptive policy maps, 

showing alternative pathways leading to desired policy outcomes. The interactive policy maps facilitate 

interactive stakeholder consultation for the design of policies which commit to short term objectives and 

define future contingency actions to prevent policy failure in case of unexpected contextual parameter 

changes. 

The STatistical approximation-based modEl EMulator (STEEM) addresses computational burdens that are 

typically raised by simulation models’ computational complexity, resulting in time-consuming simulations. 

Using machine learning techniques, STEEM is trained using inputs and outputs from original models, and 

then is used to make quick approximations of outputs given new inputs. 
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TEEM suite 

is a wholesale market simulation framework which consists of two modules: 

(i) a unit commitments and optimal dispatch module that calculates the cost-

optimal dispatch of electricity generation units, and (ii) an agent-based 

module that simulates the bidding behavior of electricity generators (agents) who progressively learn to bid 

their capacities in a day ahead competitive wholesale market, with ultimate goal the maximization of their 

profits. The model can support cost-benefit analysis of future policy and/or technology deployment scenarios, 

to quantify the effects of different policy measures and market developments on the electricity price and the 

fuel mix. The initial modeling framework is presented by Papadelis et al., (2012) [1], while it was further 

developed during the H2020 project “TRANSrisk”, where it was calibrated for the case of the Netherlands, 

to evaluate the impacts, costs, and benefits of increasing the renewable energy system share (specifically 

solar PV) in the electricity mix, while reducing the share of fossil (i.e. coal and gas) and nuclear generators. 

The model has been also used to measure the impact of an energy storage-based transition on electricity 

prices, for different levels of installed PV capacity and market share of storage in the Greek power sector. 

More information is presented by Nikas et. al (2018) [2].  

Requirements 

Inputs Outputs 
Hourly demand projections, For each electricity producer: power 

produced, cost and profit, 
System Marginal Price (SMP), 

System electricity generation costs, 

The optimal electricity mix in order 
to economically match the demand 

over the modelled period, CO2 

emissions 
 

 

 
 

 

Output data in CSV format 

Generator-specific data (fuel type, technology, nominal power, technical minimum power, 

efficiency, minimum uptimes and downtimes, availability, cost per production unit, costs of 
‘hot’/’cold’ start-up, must-run market rule, percentage of biomass co-firing for coal 

generators) 

Projections of electricity generation from wind and solar sources, 

Projections of electricity available from water sources, separately for each drainage basin 
and on a monthly resolution, 

Fuel price projections (coal, oil, natural gas, biomass, etc.), 

Import prices projection, 

Wind and solar subsidy policies, 

Market-specific rules and regulations, such as max allowed electricity price, required 
primary reserve, remuneration methods for RES, etc, 

Input data in CSV format 

Language: Python source code 

 

 is an agent-based model that simulates the dynamics of technology 

adoption among consumers. The model was developed during the H2020 

project “TRANSrisk” and has already been used to provide scenarios of 

new capacity additions for small-scale PV (i.e. 1kW-10kW), in Greece, under the Net-Metering scheme, 

currently in effect and a proposed Self-Consumption scheme, that subsidizes residential electricity storage 

(similar to the respective support scheme in Germany). Supported by a complete framework for parameter 

estimation based on historical data, ATOM can be used to quantify the behavioural uncertainty that governs 

the technology adoption scenarios derived. More information is presented by Stavrakas, Papadelis and 

Flamos (2019) [3]. 

Requirements 

Inputs Outputs 

Historical data of demand for small-scale PV 

investments, 

Scenarios of new PV capacity addition 

 

 
 

 

 
Output data in CSV format 

PV costs, 

Battery costs, 
Retail price, 

Compensation schemes for consumers, 

Input data in CSV format 

Language: Python source code 
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is a fully integrated dynamic high-resolution model resolving key 

features that are not found together in existing Demand-Side 

Management (DSM) models. The model serves as an entry point 

in DSM modeling in the building sector, by expanding the computational capabilities of existing BES models 

to assess the benefits and limitations of demand-flexibility, primarily for consumers, and for other power 

actors involved. The model was developed during the H2020 project “TRANSrisk”, and its novelty lies 

mainly in its modularity, as its structure is decomposed into individual modules characterized by the main 

principles of component- and modular-based system modeling approach, namely “the interdependence of 

decisions within modules; the independence of decisions between modules; and the hierarchical dependence 

of modules on components embodying standards and design rules.” 

This approach allows for more flexibility in terms of possible system configurations and computational 

efficiency towards a wide range of scenarios studying different aspects of end-use. It also provides the ability 

to incorporate future technological breakthroughs in a detailed manner, such as the inclusion of heat pumps 

or electric vehicles, in view of energy transitions envisioning the full electrification of the heating and 

transport sectors. The latter makes the DREEM model competitive compared to other models in the field, 

since scientific literature acknowledges that there are limitations to how much technological detail can be 

incorporated without running into computational and other difficulties. The model also supports the 

capability of producing output for a group of buildings and can also serves as a basis for modelling domestic 

energy demand within the broader field of urban energy systems analysis. The model can be coupled with 

BSAM to support the evaluation of the expected impacts from bringing demand-flexibility into the power 

market, and/or with ATOM to simulate the adoption of technologies that can be regarded as flexibility 

enablers (i.e. small-scale PV, battery storage, smart thermostats, etc.). More information is presented by 

Stavrakas and Flamos (2020) [4]. 

The architecture of the model, as it currently stands, is visualized in Figure 1 below. 

 

Figure 1. Current architecture of the DREEM model 
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Requirements 

Inputs Outputs 
TMY3 weather data format, as obtained from 
http://energyplus.net/weather, 

Net building electrical demand, 
Benefits of self-consumption/demand-flexibility for consumers, 

Aggregated results for n buildings 

Benefits/losses for suppliers 
 

 

 
Output data in CSV and MAT formats 

Building typologies according to Tabula webtool 

(http://episcope.eu/building-typology/) 

Thermal comfort parameters, 

HVAC & control settings, 
Occupancy & activity profiles 

Input data in CSV format 

Language: Python source code, Modelica (simulations using Dymola environment) 

 
Classic decision-making used to be based on a static plan that was considered 

optimal for the “most likely” future outcome. This approach was proven 

vulnerable to unexpected future evolutions, which often led to failure of plans 

that were considered optimal. With dynamic and adaptive policies, the focus 

is on short-term planning, with simultaneous description of potential future adaptive actions that can be 

deployed so that the final target is achieved. To do so, AIM evaluates the performance of selected policies 

over many combinations of a large number of contextual uncontrollable variables (scenarios), visualizes 

successful policy pathways towards a predefined target, and sets up a monitoring system for real world policy 

adaptations in case of unexpected contextual future evolutions. 

The novelty of AIM lies in: (i) using a simple clustering logic, thus it can be easily adapted for soft-linking 

with a wide variety of models, (ii) generating adaptive policies for different contexts, by changing the limits 

of the uncontrollable variables (scenarios), making it a useful tool for application at various scales and 

contexts, and (iii) facilitating interactive stakeholder consultation for the design of policy pathways, through 

real-time and easily interpretable visualizations. The exploratory analysis consists of three main modules 

visually presented in  Figure 2 below. More information is presented in Michas et.al. (2020) [5] 

 

Figure 2. The modules of AIM applied in the context of the original Dynamic Adaptive Policy Pathways (DAPP) methodology 

 

http://energyplus.net/weather
http://episcope.eu/building-typology/
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Requirements 

Inputs Outputs 
Simulation Models’ Inputs-Outputs Adaptive policy maps 

Language: Python source code 

 
The contribution of the STEEM plugin toolbox to the wider modelling 

community, lies in: 

I. Fast/interactive model approximations: This can help establishing a tight loop between 

stakeholders and the modelling teams, thus making it possible to identify options and scenarios in 

a timely fashion that stakeholders either reject or explore further in terms of costs or impacts, 

II. Quantifying the uncertainties that govern the modelling assumptions: Through the relevance-

based learning capability of the STEEM, users can evaluate what the most valuable data for the 

given task are. 

STEEM belongs to the framework family; it uses a purely mathematical methodology to emulate the 

operation of analytical, computationally-complex models, but without the requirement to know the dynamics, 

physics, engineering and mechanics governing these models. 

However, how does the emulator map outputs to inputs without knowing the underlying mathematics? 

Black box models are ignorant of the underlying mathematics. They need a two–step approach to use them. 

The first step is called calibration: inputs and outputs produced from the analytical models are given to the 

model to train it. Then, the trained model is used to make approximations/predictions, emulating the original 

model behind the data. Statistical regressions, neural networks and other machine learning methodologies 

are most often used to train the model and produce approximations. The main advantage of these models is 

the low computational requirements and consequently the fast simulations. STEEM belongs to the black box 

category and uses a Gaussian Process (GP) regression for the calibration and prediction procedures [6]. 

Requirements 

Inputs Outputs 
 

Simulation Models’ Inputs-Outputs 

Fast/interactive model approximations 

Quantification of uncertainty 

Language: Python source code 

Why TEEM suite? 

TEEM is a complete modeling suite that allows users to perform quick simulations as part of an iterative 

participatory process aiming to provide answers to “what if” scenarios. The models can be coupled (i.e., soft- 

and/or hard- linking)  to support the evaluation of the expected impacts from bringing demand-flexibility into 

the power market and/or to simulate the adoption of technologies that can be regarded as flexibility enablers 

(i.e., smart-grid devices).  

For example, in the context of Greece, the co-simulation of the TEEM suite can shed light on the trade-offs 

or synergies between a low-carbon transition that relies mainly on large-scale RES plants and a transition 

that favours small-scale, decentralized RES generation. The inputs/outputs of the co-simulation can be used 

for deriving a fast, emulated model that can support face-to-face interactions (i.e., workshops, interviews, 

etc.) with key policymakers and stakeholders in Greece. 
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Model Application & Indicative Model Outcomes 
ATOM – AIM - STEEM 
Figure 3 presents the applicability of both TEEM plugin models (AIM and STEEM) coupled with ATOM, 

in the context of a transdisciplinary modeling framework that generates dynamic adaptive policy pathways 

supporting the diffusion of small-scale PV installations towards the achievement of the 2030 capacity targets 

in Greece.  

 

Figure 3. An indicative transdisciplinary modelling framework for the design of dynamic adaptive policy pathways towards the 

achievement of the 2030 PV capacity targets in Greece 

The policies under consideration are the Net-Metering scheme currently operational in Greece and 3 

typologies of subsidizing self-consumption with storage (i.e. 30%, 50% and 65% subsidy of the initial battery 

investment costs). The contextual factors that were used to create the ensemble of uncertainty scenarios for 

the assessment of the selected policies are: (i) the annual increase rate of the electricity retail price, (ii) the 

annual decrease rate of the battery storage investment costs, (iii) the annual decrease rate of the PV panel 

investment costs, and (iv) the annual increase/decrease rate of the residential electricity demand, all with 

reference to 2017 levels. 1000 combinations of the above uncontrollable variables were generated, and each 

policy scheme was evaluated for all these cases. Policy schemes were considered successful if  

i. the PV capacity additions met at least the EU-prescribed intermediate milestones,  

ii. the maximum capacity achieved was not above 20% of the trajectory, 

iii. for the years without a specific milestone, the PV capacity additions followed the capacity trajectory 

with an allowed deviation of ±20%. 

 

in more than 70% of the future evolutions (scenarios). The upper limitation was set (in line with stakeholders’ 

advice) to limit policy costs. An indicative policy pathway visualisation is shown in Figure 4. 
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Figure 4. Indicative adaptive policy pathways mapping to explore support towards the achievement of the PV capacity targets for 

2025 and 2030 in Greece 

Figure 5 shows an indicative trigger point for 2030 which signals the potential need for re-evaluation of 

policy options, as generated by the monitoring system.  

 

Figure 5. Adaptation Trigger point as generated by the monitoring system of AIM 

The min and max trigger point levels shown in the figure, indicate the limits within which the most influential 

uncontrollable variable(s) should be in 2028 so that no policy change would be required. Out of these (trigger 

points’) levels, a re-evaluation and switch to alternative policies is advisable. 
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