Transition pathways for a low-carbon power system in Greece

Empowering consumers to produce and store clean energy at the local level

Vassilis Stavrakas, Serafeim Michas, Sotiris Papadelis, Alexandros Flamos

FOR CLIMATE CHANGE POLICIES

Introduction

Strong incentives for the further deployment of small-scale PV in Greece are essential without continuing to rely on Feed-in-Tariffs (FiTs). Such incentives can be found in business models (BMs) that exploit the flexibility of demand without requiring significant changes in the current market design. So far, demand-flexibility is already available: **a.** as a way to increase self-consumption, and **b**. by applications that aim primarily to increase energy efficiency (e.g. smart thermostats). (\mathbf{A})

However, recent studies on the French, German-Austrian and L Nordic spot markets has shown that with demand-flexibility:

Research Methods

We follow an iterative methodological approach

Results (continued)

- Consumers enjoy significant consumption (and financial) savings, but
- For vertically integrated entities that combine both generation & retailing operations under one corporate roof, the financial results are fundamentally negative.

Context

RESEARCH QUESTION

How can Self-Consumption & Demand-Flexibility be brought into the Greek power market?

- Which policies can drive a **transition pathway** for the power system that is based on the **notion** of consumers generating, storing and consuming clean energy locally?
- How could potential **costs** and **benefits** be distributed to both the consumers and the power market actors?

Developing new BMs that incentivize all involved actors to incorporate demand-side flexibility into the markets that can valorize it:

- □ Change in distribution of electricity demand,

- the DR signals that maximize its benefit Python Implementation
- We employ Reinforcement Learning (RL) in order to "teach" the retailer the optimal policy to maximize its revenues.

2018 FD0

Modelica

Libraries

bigo... Switch

Biz

B developed a Demand-REsponsE Model (DREEM) We coupling dynamic simulation between:

- Building envelope properties
- Indoor environment,
- HVAC control systems,
- Thermal comfort,
- Renewable self-consumption,
- Incoming DR signals based on the Hourly Electricity Price (HEP)

Novelty

Combining electricity storage with smart thermostat capabilities (so far only used for increasing energy) efficiency in buildings),

Scripts

Controllers/control algorithms to comply with the DR signals.

The central planner receives the results of its DR signals C)

Pathway 1 Willing to invest consumers

NEW PV CAPACITY ADDITION IN GREECE (2018-2025)

Pathway 2 is more effective than Pathway 1 in terms of new PV capacity addition

□ Re-shaping the electricity system.

STARTING POINT

No significant changes are required in:

- the current regulatory framework,
- the current operation of the power market.

Incorporating Demand-Response into the retailing operations of the utilities

- Extra tool for the retailers' trades in the day-ahead, intra-day and real-time (where they exist) markets,
- Minimization of costs during short-term electricity procurement.

However...

Demand-Response (DR) by itself is unlikely to incentivize consumers to invest in new technological capabilities.

- \succ The public is expected to adopt according to a value stemming from increased consumption of electricity generated onsite from renewable resources.
- \succ When self-consumption is economically rational, consumers may invest in technologies that increase their demand flexibility to increase the proportion of the self-

according to the degree of compliance..

...allocates the benefits to the consumers

We developed an Agent-based Technology adOption D Model (ATOM) to create scenarios for small-scale PV adoption in Greece under:

- a proposed self-consumption support scheme (i.e. 25% subsidy of residential electricity storage) - Pathway 1 a proposed DR support policy (i.e. 25% subsidy of electricity storage
- \checkmark & allowing Demand-Response to the market) - Pathway 2

Conclusions & Policy Implications

- The flexibility to increase self-consumption can be brought to the market without a need: a. for significant changes in the current market design, and **b**. for consumers to sacrifice thermal comfort and energy services,
- Bringing flexibility to the market increases the value of the technologies that enable this flexibility: This increased value can counterbalance the phase out of FiTs and provide new incentives for PV investment in Greece,
- New and more sustainable BMs will arise for the utility: Promotion of energy saving technologies will reduce the costs of penalties (i.e. non-compliance with the recently

produced electricity they consume.

MOTIVATION

Increased adoption of building-scale technologies for electricity and heating/cooling using RES ...

...requires that these technologies become competitive with fossil fuel alternatives.

Our study focuses on...

- ...ways to couple small-scale PV with DR technologies
- > ...using this infrastructure to generate additional revenues for consumers...

Results

BAU SCENARIO

www.transrisk-project.eu

introduced Energy Efficiency Obligation schemes - EEOs),

A synergistic co-operation between the power provider and the prosumer can lead to significant cost reductions and energy savings: A fair allocation of benefits can provide incentives to both so that to coordinate,

Although the shift to DR seems logical: a. it is not inevitable in terms of consumer behavior, and **b**.it is gamechanging, as the implementation of new BMs in the electricity market captures new value on the supply side by coupling it to the demand side.

Contact name Email: aflamos@unipi.gr

Phone: +30 210 414 2460

https://teeslab.unipi.gr

The TRANSrisk project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no 642260.